Skip to main content Accessibility help

Feasibility and potential of three-dimensional printing in laryngotracheal stenosis

  • Z Richard (a1), E Jackson (a2), J P Jung (a3) and S P Kanotra (a2)



The use of three-dimensional printing has been rapidly expanding over the last several decades. Virtual surgical three-dimensional simulation and planning has been shown to increase efficiency and accuracy in various clinical scenarios.


To report the feasibility of three-dimensional printing in paediatric laryngotracheal stenosis and discuss potential applications of three-dimensional printed models in airway surgery.


Retrospective case series in a tertiary care aerodigestive centre.


Three-dimensional printing was undertaken in two cases of paediatric laryngotracheal stenosis. One patient with grade 4 subglottic stenosis with posterior glottic involvement underwent an extended partial cricotracheal reconstruction. Another patient with grade 4 tracheal stenosis underwent tracheal resection and end-to-end anastomosis. Models of both tracheas were printed using PolyJet technology from a Stratasys Connex2 printer.


It is feasible to demonstrate stenosis in three-dimensional printed models, allowing for patient-specific pre-operative surgical simulation. The models serve as an educational tool for patients’ understanding of the surgery, and for teaching residents and fellows.


Corresponding author

Author for correspondence: Dr Sohit Paul Kanotra, Assistant Professor, Department of Otolaryngology-Head & Neck Surgery, University of Iowa Hospitals & Clinics, Iowa City, Iowa E-mail: Fax: 319 356 4547


Hide All

Dr S P Kanotra takes responsibility for the integrity of the content of the paper

Presented orally at the American Society of Pediatric Otolaryngology Annual Meeting, 18–20 May 2017, Austin, Texas, USA.



Hide All
1Gross, BC, Erkal, JL, Lockwood, SY, Chen, C, Spence, DM. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem 2014;86:3240–53
2Kaye, R, Goldstein, T, Zeltsman, D, Grande, DA, Smith, LP. Three dimensional printing: a review on the utility within medicine and otolaryngology. Int J Pediatr Otorhinolaryngol 2016;89:145–8
3Zopf, DA, Flanagan, CL, Wheeler, M, Hollister, SJ, Green, GE. Treatment of severe porcine tracheomalacia with a 3-dimensionally printed, bioresorbable, external airway splint. JAMA Otolaryngol Head Neck Surg 2014;140:6671
4Balakrishnan, K, Cofer, S, Matsumoto, JM, Dearani, JA, Boesch, RP. Three-dimensional printed models in multidisciplinary planning of complex tracheal reconstruction. Laryngoscope 2017;127:967–70
5Tack, P, Victor, J, Gemmel, P, Annemans, L. 3D-printing techniques in a medical setting: a systematic literature review. Biomed Eng Online 2016;15:115
6Itagaki, MW. Using 3D printed models for planning and guidance during endovascular intervention: a technical advance. Diagnostic Interv Radiol 2015;21:338–41
7Hermsen, JL, Burke, TM, Seslar, SP, Owens, DS, Ripley, BA, Mokadam, NA et al. Scan, plan, print, practice, perform: development and use of a patient-specific 3-dimensional printed model in adult cardiac surgery. J Thorac Cardiovasc Surg 2017;153:132–40
8Crafts, T, Ellsperman, S, Wannemuehler, T, Bellicchi, T, Shipchandler, T, Mantravadi, A. Three-dimensional printing and its applications in otorhinolaryngology–head and neck surgery. Otolaryngol Head Neck Surg 2016;156:9991010
9Han, Y, Yang, S, Huang, W, Wang, Z, Li, H. A Hem-o-Lok-induced tracheoesophageal fistula cured by temporary airway stenting modified with three-dimensional printing. Ann Thorac Surg 2018;106:219–21
10Doucet, G, Ryan, S, Bartellas, M, Parsons, M, Dubrowski, A, Renouf, T. Modelling and manufacturing of a 3D printed trachea for cricothyroidotomy simulation. Cureus 2017;9:e1575
11Parotto, M, Jiansen, JQ, AboTaiban, A, Ioukhova, S, Agzamov, A, Cooper, R et al. Evaluation of a low-cost, 3D-printed model for bronchoscopy training. Anaesthesiol Intensive Ther 2017;49:189–97
12Chen, F-L, Horng, T-L, Shih, T-C. Simulation analysis of airflow alteration in the trachea following the vascular ring surgery based on CT images using the computational fluid dynamics method. J Xray Sci Technol 2014;22:213–25
13Taniguchi, D, Matsumoto, K, Tsuchiya, T, Machino, R, Takeoka, Y, Elgalad, A et al. Scaffold-free trachea regeneration by tissue engineering with bio-3D printing. Interact Cardiovasc Thorac Surg 2018;26:745–52
14Zdanski, C, Davis, S, Hong, Y, Miao, D, Quammen, C, Mitran, S et al. Quantitative assessment of the upper airway in infants and children with subglottic stenosis. Laryngoscope 2016;126:1225–31


Related content

Powered by UNSILO

Feasibility and potential of three-dimensional printing in laryngotracheal stenosis

  • Z Richard (a1), E Jackson (a2), J P Jung (a3) and S P Kanotra (a2)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.