Skip to main content Accessibility help

Evaluation of receiver–stimulator migration in cochlear implantation using the subperiosteal pocket technique: a prospective clinical study

  • Y Güldiken (a1), B Polat (a1), N Enver (a1), L Aydemir (a2), Ş Çomoğlu (a1) and K S Orhan (a1)...



This study aimed to evaluate migration of the receiver–stimulator after cochlear implantation using the subperiosteal pocket technique.


A prospective clinical study was performed of 32 paediatric patients (aged between 12 months and 8 years; mean ± standard deviation, 28 ± 19 months) who underwent cochlear implantation in tertiary referral centres. The degree of migration was evaluated using measurements between the receiver–stimulator and selected reference points: the lateral canthus, tragus and mastoid tip. All distances were measured during and six months after surgery.


No receiver–stimulator migration was observed when using the subperiosteal pocket technique.


Concerns about implant migration in the subperiosteal pocket technique are unwarranted: this is a safe technique to use for cochlear implantation.


Corresponding author

Address for correspondence: Dr B Polat, Department of ORL and Head and Neck Surgery, Istanbul Medical Faculty, University of Istanbul, 34270 Fatih, Istanbul, Turkey. Fax: +90 212 414 20 00 E-mail:


Hide All
1 Gosepath, J, Maurer, J, Mann, WJ. Epidural hematoma after cochlear implantation in a 2.5-year-old boy. Otol Neurotol 2005;26:202–4
2 Barraclough, JP, Pearman, K, Solanki, G. Extradural haematoma presenting as a contralateral sixth nerve palsy after cochlear implantation. Cochlear Implants Int 2009;10:112–18
3 Arnoldner, C, Baumgartner, WD, Gstoettner, W, Hamzavi, J. Surgical considerations in cochlear implantation in children and adults: a review of 342 cases in Vienna. Acta Otolaryngol 2005;125:228–34
4 Staecker, H, Chow, H, Nadol, JB. Osteomyelitis, lateral sinus thrombosis, and temporal lobe infarction caused by infection of a percutaneous cochlear implant. Am J Otol 1999;20:726–8
5 Davids, T, Ramsden, JD, Gordon, KA, James, AL, Papsin, BC. Soft tissue complications after small incision pediatric cochlear implantation. Laryngoscope 2009;119:980–3
6 Molony, TB, Giles, JE, Thompson, TL MD, Motamedi, KK. Device fixation in cochlear implantation: is bone anchoring necessary? Laryngoscope 2010;120:1837–9
7 Black, B. Keyhole cochlear implantation surgery. Cochlear Implants Int 2009;10:150–9
8 Shelton, C, Warren, FM. Minimal access cochlear implant fixation: temporalis pocket with a plate. Otol Neurotol 2012;33:1530–4
9 Causon, A, Verschuur, C, Newman, TA. Trends in cochlear implant complications: implications for improving long-term outcomes. Otol Neurotol 2013;34:259–65
10 Wang, JT, Wang, AY, Psarros, C, Da Cruz, M. Rates of revision and device failure in cochlear implant surgery: a 30-year experience. Laryngoscope 2014;124:2393–9
11 Güldiken, Y, Orhan, KS, Yigit, O, Başaran, B, Polat, B, Güneş, S et al. Subperiosteal temporal pocket versus standard technique in cochlear implantation: a comparative clinical study. Otol Neurotol 2011;32:987–91
12 Jethanamest, D, Channer, GA, Moss, WJ, Lustig, LR, Telischi, FF. Cochlear implant fixation using a subperiosteal tight pocket without either suture or bone-recess technique. Laryngoscope 2014;124:1674–7
13 Cuda, D. A simplified fixation of the new thin cochlear implant receiver-stimulators in children: long term results with the ‘back-pocket’ technique. Int J Pediatr Otorhinolaryngol 2013;77:1158–61
14 Cohen, MS, Ha, AY, Kitsko, DJ, Chi, DH. Surgical outcomes with subperiosteal pocket technique for cochlear implantation in very young children. Int J Pediatr Otorhinolaryngol 2014;78:1545–7
15 Sweeney, AD, Carlson, ML, Valenzuela, CV, Wanna, GB, Rivas, A, Bennett, ML et al. 228 cases of cochlear implant receiver-stimulator placement in a tight subperiosteal pocket without fixation. Otolaryngol Head Neck Surg 2015;152:712–17
16 Verbist, BM, Joemai, RMS, Teeuwisse, WM, Veldkamp, WJH, Geleijns, J, Frijns, JHM. Evaluation of 4 multisection CT systems in postoperative imaging of a cochlear implant: a human cadaver and phantom study. AJNR Am J Neuroradiol 2008;29:1382–8
17 Verbist, BM, Frijns, JHM, Geleijns, J, van Buchem, MA. Multisection CT as a valuable tool in the postoperative assessment of cochlear implant patients. AJNR Am J Neuroradiol 2005;26:424–9
18 Trieger, A, Schulze, A, Schneider, M, Zahnert, T, Mürbe, D. In vivo measurements of the insertion depth of cochlear implant arrays using flat-panel volume computed tomography. Otol Neurotol 2011;32:152–7
19 Lui, C-C, Peng, J-P, Li, J-H, Yang, C-H, Chen, C-K, Hwang, C-F. Detection of receiver location and migration after cochlear implantation using 3D rendering of computed tomography. Otol Neurotol 2013;34:1299–304


Evaluation of receiver–stimulator migration in cochlear implantation using the subperiosteal pocket technique: a prospective clinical study

  • Y Güldiken (a1), B Polat (a1), N Enver (a1), L Aydemir (a2), Ş Çomoğlu (a1) and K S Orhan (a1)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed