Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-25T05:03:47.759Z Has data issue: false hasContentIssue false

The use of video-imaging to assesss the sub-lethal impact of plant secondary compounds on Schistosoma mansoni miracidia

Published online by Cambridge University Press:  05 June 2009

J.R.A. Lyddiard*
Affiliation:
Infection and Immunity Research Group, Division of Life Sciences, King's College London, University of London, Campden Hill Road, Kensington, London, W8 7AH, UK
A. Bartlett
Affiliation:
Faculty of Science, Design and Technology, NESCOT, Reigate Road, Ewell, Surrey, KT7 3DF, UK
B. Gray
Affiliation:
Faculty of Science, Design and Technology, NESCOT, Reigate Road, Ewell, Surrey, KT7 3DF, UK
P.J. Whitfield
Affiliation:
Infection and Immunity Research Group, Division of Life Sciences, King's College London, University of London, Campden Hill Road, Kensington, London, W8 7AH, UK
*
*Fax: 0171 333 5454. E-mail: james.r.lyddiard@kcl.ac.uk

Abstract

The study describes methods developed for using video-imaging technology to record and measure the velocity of Schistosoma mansoni miracidia. The efficacy of the classical bioassay procedure (a qualitative behavioural assay) was compared with that of the new quantitative protocol, for assessing the sub-lethal impact of a larvicidal dichloromethane extract of the seeds of Millettia thonningii on miracidia. The new technique confirmed the efficacy of the classical bioassay for rapid determination of the lethal and sub-lethal impact of larvicides but also provided quantitative information on sub-lethal impacts on miracidial velocity and shape.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bashir, A.K., Sulaiman, S.M., el Sheikh, S.H. & el Kheir, Y.M. (1987) Molluscicidal, cercaricidal and miracidicidal activities of Acacia nilotica ssp. nilotica and adamsonii. Fitoterapia 58, 5155.Google Scholar
Bennett, J.L. & Pax, R.A. (1986) Micromotility meter: an instrument to evaluate the action of drugs on motility of larval and adult nematodes. Parasitology 93, 341346.CrossRefGoogle ScholarPubMed
Bennett, J.L. & Pax, R.A. (1987) Micromotility meter: instrumentation to analyse helminth motility. Parasitology Today 3, 159160.CrossRefGoogle ScholarPubMed
Blair, K.L., Day, T.M., Lewis, M.C., Bennett, J.L. & Pax, R.A. (1991) Studies on muscle cells isolated from Schistosoma mansoni: a Ca- dependent K channel. Parasitology 102, 251258.CrossRefGoogle Scholar
Burgos, J. & Redfearn, E.R. (1965) The inhibition of mitochondrial reduced nicotinamide adenine dinucleotide oxidation by rotenoids. Biochimica et Biophysica Acta 110, 475483.CrossRefGoogle Scholar
Evans, N.A., Whitfield, P.J., Squire, B.J., Fellows, L.E., Evans, S.V. & Millot, S.M. (1986) Molluscicidal activity in the seeds of Millettia thonningii (Leguminosae: Papilionideae). Transactions of the Royal Society of Tropical Medicine and Hygiene 80, 451453.CrossRefGoogle Scholar
Hillman, G.R. & Senft, A.W. (1973) Schistosome motility measurements: responses to drugs. Journal of Pharmacology and Experimental Therapeutics 185, 177184.Google ScholarPubMed
Kloos, H. & McCullough, F.S. (1982) Plant molluscicides. Planta Medica 46, 195209.CrossRefGoogle ScholarPubMed
Lyddiard, J.R.A. (1997) Studies on the mode of action of plant allelochemicals of relevance in schistosomiasis control. PhD thesis, University of London.Google Scholar
Perrett, S. (1994) Studies on some antiparasitic secondary compounds from traditional medicinal plants. PhD thesis, University of London.Google Scholar
Perrett, S. & Whitfield, P.J. (1995) Aqueous degradation of isoflavonoids in an extract of Millettia thonningii (Leguminosae) which is larvicidal toward schistosomes. Phytotherapy Research 9, 401404.CrossRefGoogle Scholar
Perrett, S. & Whitfield, P.J. (1996) Currently available molluscicides. Parasitology Today 12, 156159.CrossRefGoogle ScholarPubMed
Perrett, S., Whitfield, P.J., Bartlett, A. & Sanderson, L. (1994) Attenuation of Schistosoma mansoni cercariae with a molluscicide derived from Millettia thonningii. Parasitology 109, 559563.CrossRefGoogle ScholarPubMed
Prah, S.K. & James, C. (1977) The influence of physical factors on the survival and infectivity of miracidia on Schistosoma mansoni and S. haematobium. I. Effect of temperature and ultra-violet light. Journal of Helminthology 51, 7385.CrossRefGoogle ScholarPubMed
Sturrock, R.F., Klumpp, R.K., Ouma, J.H., Butterworth, A.E., Fulford, A.J.L., Kariuki, H.C., Thiongio, F.W. & Koech, D. (1994) Observations on the effects of different chemotherapy strategies on the transmission of Schistosoma mansoni in Mackakos district, Kenya, measured by long-term snail sampling and cercariometry. Parasitology 109, 443453.CrossRefGoogle ScholarPubMed
Squire, B.J. & Whitfield, P.J. (1989) Millettia thonningii: a rapid knockdown cercaricide for schistosome cercariae. Phytotherapy Research 3, 112114.CrossRefGoogle Scholar
Tang, S.S.H. (1994) Studies on molluscicidal compounds from Phytolacca dodecandra ("Endod") and Millettia thonningii. PhD thesis, University of London.Google Scholar
Tang, S.S.H., Whitfield, P.J. & Perrett, S. (1995) Activity of the molluscicidal plant Millettia thonningii (Leguminosae) towards Biomphalaria glabrata eggs. Journal of Parasitology 81, 833835.CrossRefGoogle Scholar
WHO (1993) Schistosomiasis control. Technical Report Series, 830. World Health Organization, Geneva.Google Scholar