Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T07:35:12.377Z Has data issue: false hasContentIssue false

Studies on the ultrastructure and histochemistry of the lymph system in three species of amphistome (Trematoda: Digenea) Gigantocotyle explanatum, Gastrothylax crumenifer and Srivastavaia indica from the Indian Water Buffalo Bubalus bubalis

Published online by Cambridge University Press:  18 November 2009

T. S. Dunn
Affiliation:
Department of Zoology, Queen's University, Belfast BT7 INN, N. Ireland
W. A. Nizami
Affiliation:
Department of Zoology, Aligarh Muslim University, Aligarh-202001, India
R. E. B. Hanna
Affiliation:
Department of Zoology, Queen's University, Belfast BT7 INN, N. Ireland

Abstract

The lymph system of three amphistome parasites from buffaloes, Gigantocotyle explanatum, Gastrothylax crumenifer and Srivastavaia indica was studied using light microscope histochemistry and electron microscopy. In each case the system comprised a single pair of main longitudinal vessels which gave rise to numerous sub-dividing lateral branches. Although the finer lymph channels associated with most internal systems, they did not penetrate the basement membrane of any organ. The lymph vessels were delimited by a unit membrane and separated from adjacent cells by interstitial material. The lymph fluid consisted of an amorphous proteinaceous, lipid-rich matrix, containing naked nuclei and granules of various sizes. Complexes of endoplasmic reticulum were frequently associated with the nuclei. No distinct Golgi bodies or mitochondria were evident. The granules noted throughout the lymph morphologically resembled autophagosomes and lysosomes. Autophagy within the lymph system presumably mobilizes amino acids for subsequent transport to tissues undergoing active protein synthesis. The lymph channels displayed an intimate relationship with the general parenchyma. In particular, numerous protrusions of lymph occurred into the cytoplasm of certain specialized parenchymal cells surrounding the pharynx. Within these ‘juxtapharyńigeal’ cells autophagic degradation of sequestered lymph cytoplasm apparently occurred. In the three species of amphistome studied, the lymph system appears to function in storage and mobilization of amino acids and possibly lipids. It may also serve to distribute other small molecules throughout the body. The detection of haemoglobin in the lymph system of G. crumenifer and S. indica, but not in Gigantocotyle explanatum, suggests a further role in oxygen storage and transport.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bayliss, O. B. & Adams, C. W. M. (1972) Bromine Sudan Black (BSB). A general stain for tissue lipids including free cholesterol. Histochemical Journal, 4, 505.CrossRefGoogle Scholar
Cheng, T. C. & Streisfeld, S. D. (1963) Innate phagocytosis in the trematodes Megalodiscus temperatus and Haematoloechus sp. Journal of Morphology, 113, 375380.CrossRefGoogle ScholarPubMed
Creplin, F. (1847) Beschreibung zweier neuen Amphistomen-Arten aus dem Zebu-Ochsen. Archiv Naturgeschichte, 13, 3035.Google Scholar
Eduardo, S. L. (1982) The taxonomy of the family Paramphistomidae Fischoeder, 1901 with special reference to the morphology of species occurring in ruminants. II. Revision of the genus Paramphistomum Fischoeder, 1901. Systematic Parasitology, 4, 189238.CrossRefGoogle Scholar
Erasmus, D. A. (1967) Ultrastructural observations on the reserve bladder system of Cyathocotyle bushiensis Khan, 1962 (Trematoda: Strigeoidea) with special reference to lipid excretion. Journal of Parasitology, 53, 525536.CrossRefGoogle ScholarPubMed
Fischoeder, F. (1904) Beschreibung dreier Paramphistomiden-Arten aus Säugethieren. Zoologische Jahrbücher, Abteilung Jür Systematik, Geographic und Biologie der Tiere, 20, 453470.Google Scholar
Gupta, N. K. & Dutta, T. (1967) On Fischoederius cobboldi—a pouched amphistome from cattle in India. Research Bulletin (N.S.) of the Panjab University, 18, 4152.Google Scholar
Gurr, E. (1958) Methods of analytical histology and histochemistry. Leonard Hill [Books] Limited, London.Google Scholar
Jordan, H. E. & Reynolds, B. D. (1933) The blood cells of the trematode Diplodiscus temperatus. Journal of Morphology, 55, 119130.CrossRefGoogle Scholar
Lee, D. L. & Smith, M. H. (1965) Hemoglobins of parasitic animals. Experimental Parasitology, 16, 392424.CrossRefGoogle ScholarPubMed
Lillie, R. D. (1951) Simplification of the manufacture of Schiff reagent for use in histochemical procedures. Stain Technology, 26, 163165.CrossRefGoogle Scholar
Looss, A. (1896) Recherches sur la faune parasitaire de l'Egypte. Première partie. Mémoires de l'lnstitut égyptien. Le Caire, 3, 1252.Google Scholar
Looss, A. (1902) Übcr neue und bekannte Trematoden aus Seeschildkröten. Zoologische Jahrbücher. Abteilung für Systematik, Ökologie und Geographic der Tiere, 16, 411418.Google Scholar
Lowe, C. Y. (1966) Comparative studies of the lymphatic system of four species of amphistomes. Zeitschrift für Parasitenkunde, 27, 169204.CrossRefGoogle ScholarPubMed
Lutz, P. L. & Siddiqi, A. H. (1967) Comparison of hemoglobins of Fasciola gigantica (Trematoda: Digenea) and its host. Experimental Parasitology, 20, 8387.CrossRefGoogle ScholarPubMed
Mackinnon, B. M. (1982) The haemoglobins and respiratory enzymes in the ventral papillae of Notocotylus triserialis Diesing 1839 (Digenea: Notocotylidae). Canadian Journal of Zoology, 60, 13081313.CrossRefGoogle Scholar
Ozaki, Y. (1937) Studies on the trematode families Gyliauchenidae and Opistholebitidae, with special reference to lymph system. I and II. Journal of Science of Hiroshima University, 5, 125244.Google Scholar
Ozaki, Y. (1952) Lymph system of Paramphistomum orthocoelium and other two species. Journal of Science of Hiroshima University, 13, 7984.Google Scholar
Pantelouris, E. M. & Threadgold, L. T. (1963) The excretory system of the adult Fasciola hepatica L. La Cellule, 64, 6367.Google ScholarPubMed
Pearse, E. A. G. (1960) Histochemistry. Theoretical and Applied. J. and A. Churchill Limited, London.Google Scholar
Phillips, J. I. (1978) The occurrence and distribution of hemoglobin in the entosymbiotic rhabdocoel Paravortex scrobiculariae (Graff) (Platyhelminthes: Turbellaria). Comparative Biochemistry and Physiology A, 61, 679683.CrossRefGoogle Scholar
Rogers, W. P. (1949) On the relative importance of aerobic metabolfsm in small nematode parasites of the alimentary tract. I. Oxygen tensions in the normal environment of the parasites. Australian Journal of Scientific Research B, 2, 157174.Google Scholar
Rohde, K. (1962) Parorientodiscus magnus n.g., n.sp., ein Trematode aus dem Darm von Cyclemys amboinensis (Daud) in Malaya. Zeitschrift für Parasitenkunde, 21, 457464.CrossRefGoogle Scholar
Rohde, K. (1963) Orientodiscus fernandoi n.sp. and O. hendricksoni n.sp. (Trematoda, Paramphistomata) from the intestine of Trionyx spp. in Malaya. Journal of Helminthobgy, 37, 349358.CrossRefGoogle Scholar
Sey, O. (1979) Examination of the validity and systematic position of some paramphistomids of Indian ruminants. Parasitobgia Hungarica, 12, 3136.Google Scholar
Sharma, P. N. (1978) Histochemical distribution of succinic dehydrogenase in the lymphatic system of a trematode Ceylonocotyle scoliocoelium. Journal of Helminthobgy, 52, 159162.CrossRefGoogle Scholar
Sharma, P. N. & Ratnu, L. S. (1982) Morphology, histochemistry and biological significance of the lymphatic system of the trematode Orchocoelium scoliocoelium. Journal of Helminthobgy, 56, 5967.CrossRefGoogle ScholarPubMed
Singh, K. S. (1970) On Srivastavaia indica n.g., n.sp. (Paramphistomatidae), a parasite of ruminants and its life history. In: H. D. Srivastava Commemoration Volume. S.Singh, K. Singh, K. & K.Tandon, B. Tandon, B. (Editors), 117126.Google Scholar
Smith, M. H. & Lee, D. L. (1963) Metabolism of haemoglobin and haematin compounds in Ascaris tumbricoides. Proceedings of the Royal Society B, 157, 234257.Google Scholar
Stafford, J. (1905) Trematodes from Canadian vertebrates. Zoologischer Anzeiger, 28, 681694.Google Scholar
Strong, P. A. & Bogitsh, B. J. (1973) Ultrastructure of the lymph system of the trematode Megalodiscus temperatus. Transactions of the American Microscopical Sorterv. 92, 570578.CrossRefGoogle Scholar
Stunkard, H. W. (1929) The parasitic worms collected by the American Museum of Natural History Expedition to the Belgian Congo, 1909–1914. Bulletin of the American Museum of Natural History, 58, 233289.Google Scholar
Tandon, R. S. (1960 a) Studies on the lymphatic system of amphistomes of ruminants: I. Carmyerius spatiosus (Stiles & Goldberger, 1910). Zoologischer Anzeiger, 159, 213217.Google Scholar
Tandon, R. S. (1960 b) Studies on the lymphatic system of amphistomes of ruminants: 2. The genera Gastrothylax and Fischoederius. Zoologischer Anzeiger, 159, 217221.Google Scholar
Threadgold, L. T. & Arme, C. (1974) Electron microscope studies ofFasciola hepatica XI. Autophagy and parenchymal cell function. Experimental Parasitology, 35, 389405.CrossRefGoogle ScholarPubMed
Threadgold, L. T. & Brennan, G. (1978) Fasciola hepatica: basal infolds and associated vacuoles of the tegument. Experimental Parasitology, 46, 300316.CrossRefGoogle ScholarPubMed
Willey, C. H. (1930) Studies on the lymph system of digenetic trematodes. Journal of Morphology and Physiology, 50, 137.CrossRefGoogle Scholar
Willey, C. H. (1935) The excretory system of the trematode, Typhlocoelum cucumerinum, with notes on lymph-like structures in the family Cyclocoelidae. Journal of Morphology, 57, 461471.CrossRefGoogle Scholar