Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-25T22:01:59.818Z Has data issue: false hasContentIssue false

Immunocytochemical and ultrastructural studies on Dipetalonema viteae (Filarioidea)

Published online by Cambridge University Press:  05 June 2009

A. Prüsse
Affiliation:
Institut für Tropenhygiene und öffentliches Gesundheitswesen am Südasien-Institut der Universität Heidelberg, Im Neuenheimer Feld 324, D–6900 Heidelberg, West Germany
S. Vollmer
Affiliation:
Institut für Tropenhygiene und öffentliches Gesundheitswesen am Südasien-Institut der Universität Heidelberg, Im Neuenheimer Feld 324, D–6900 Heidelberg, West Germany
H. J. Diesfeld
Affiliation:
Institut für Tropenhygiene und öffentliches Gesundheitswesen am Südasien-Institut der Universität Heidelberg, Im Neuenheimer Feld 324, D–6900 Heidelberg, West Germany

Abstract

The antigenic properties of adult male and female of Dipetalonema viteae were studied by immunocytochemistry. Using antisera of the rodents Meriones unguiculatus and Mastomys natalensis infected with D. viteae, the binding of antibodies to sections of filariae embedded in Epon was assayed by the peroxidase-antiperoxidase (PAP) technique and by electron microscopy. The optimal staining intensity was obtained with an antiserum dilution of 1:5000. Control sera were obtained from sex and age matched uninfected animals.

Female D. viteae showed maximal antigen-antibody reactions within the uterus: in the inner uterus wall, in the “nutrient channels” between the maturing eggs and the differentiating microfilariae, on the eggshells, in the cuticula of microfilariae and in the spermatheca on the cell membrane of the mature spermatozoa. Male filariae showed binding of antibodies in the vesicula seminalis: in the nucleus and the nuclear membrane of primary spermatocytes and on maturing spermatids. Less pronounced antigen-antibody reactions in the cuticula, muscle and intestine were observed in both sexes.

The PAP-technique offers significant improvements in comparison with other techniques, e.g., immunofluorescence, used to detect antigens on filariae: the PAP-technique has an increased sensitivity with a concomitant reduction in nonspecific background and can be used for both light and electron microscopy; moreover, PAP-treated tissues can be stored indefinitely at room temperature.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baschong, W., Tanner, M., Betschart, B., Rudin, W. & Weiss, N. (1982) Dipetalonema viteae: extraction and immunogenicity of cuticular antigens from female worms. Experimental Parasitology, 53, 262269.CrossRefGoogle ScholarPubMed
Bogitsh, B. J. & Carter, C. E. (1975) Immunocytochemical Studies on Schistosoma mansoni. I. Soluble egg antigen in eggshell-enclosed miracidium. Journal of Parasitology, 61, 10301040.CrossRefGoogle ScholarPubMed
Bradley, P. M. & Burghardt, R. C. (1976) Immunocytochemistry of surface changes in Ascaris spermatozoa during maturation. 34th Annual Proceeding of the Electron Microscopy Society of America, Miami Beach, Florida, pp. 158159.Google Scholar
Demaree, R. S. & Hillyer, G. V. (1981) Immunoperoxidase localization by electron microscopy of soluble egg antigen and human IgG in circumoval precipitin reactions around Schistosoma mansoni eggs. American Journal of Tropical Medicine and Hygiene, 30, 402405.CrossRefGoogle ScholarPubMed
Diesfeld, H. J. & Kirsten, C. (1975) Lokalisation von Antigenität adulter Dipetalonema viteae-W¨rmer in der indirekten Immunfluoreszenz mit Filariose-Patientenserum. Tropenmedizin und Parasitologie, 26, 499502.Google Scholar
Diesfeld, H. J. & Kirsten, C. (1978) Antigen Aktivität von Eiern, Eihüllen, Stoffwechselprodukten und geschlüpften Larven aus dem Uterus von Dipetalonema viteae. Tropenmedizin und Parasitologie, 29, 2732.Google ScholarPubMed
Diesfeld, H. J. & Kirsten, C. (1979) Antigenic activity in adult Dipetalonema viteae in the indirect immunofluorescent test against sera from filariasis patients—the immunofluorescent histological search for “pure” antigen. Transactions of the Royal Society of Tropical Medicine and Hygiene, 73, 533535.CrossRefGoogle ScholarPubMed
Diesfeld, H. J., Kirsten, C. & Stappert, U. (1981) Vergleichende immunofluoreszenz-histologische Untersuchungen an 7 Nematoden-Spezies in bezug aufihre Antigeneigenschaften zur Differenzierung von Nematodeninfektionen. Tropenmedizin und Parasitologie, 32, 243258.Google Scholar
Ellis, D. S., Rogers, R., Bianco, A. E. & Denham, D. A. (1978) Intrauterine development of the microfilariae of Dipetalonema viteae. Journal of Helminthology, 52, 710.CrossRefGoogle ScholarPubMed
Gibson, D. W, Connor, D. H., Brown, H. L., Fuglsang, H, Anserson, J, Duke, B. O. L. & Buck, A. A. (1976) Onchocercal dermatitis: ultrastructural studies of microfilaria and host tissues, before and after treatment with Diethylcarbamazine (Hetrazan). American Journal of Tropical Medicine and Hygiene, 25, 7487.CrossRefGoogle ScholarPubMed
Hedge, E. C. & Ridley, D. S. (1977) Immunofluorescent reactions with microfilariae. 1. Diagnostic evaluation. Transacations of the Royal Society of Tropical Medicine and Hygiene, 71, 304307.CrossRefGoogle ScholarPubMed
Maizels, R. M., Philipp, M. & Ogilvie, B. M. (1982) Molecules on the surface of parasitic nematodes as probes of the immune response in infection. Immunological Reviews, 61, 109136.CrossRefGoogle ScholarPubMed
Mclaren, D. J., Clegg, J. A. & Smithers, S. R. (1975). Acquisition of host antigens by young Schistosoma mansoni in mice: correlation with failure to bind antibody in vitro. Parasitology, 70, 6775.CrossRefGoogle ScholarPubMed
Prüsse, A., Vollmer, S. & Diesfeld, H. J. (1982) Immunocytochemical studies on Dipetalonema viteae (Filarioidea). Tropenmedizin und Parasitologie, 33, 3336.Google ScholarPubMed
Prüsse, A. & Vollmer, S. (1982) Immunocytochemical studies on Dipetalonema viteae (Filarioidea). Zentralblatt Für Bakteriologie, I. Abt. Referate, 277, 120.Google Scholar
Rix, E, Hackenthal, E., Hilgenfeldt, U. & Taugner, R. (1981) Neuropeptides in the Pineal Gland? A critical immunocytochemical study. Histochemistry, 72, 3338.CrossRefGoogle ScholarPubMed
Rogers, R., Ellis, D. S. & Denham, D. A. (1976) Studies with Brugia pahangi. 14. Intrauterine development on the microfilaria and a comparison with other filarial species. Journal of Helminthology, 50, 251257.CrossRefGoogle Scholar
Rudin, W., Tanner, M., Bauer, P. & Weiss, N. (1980) Studies on Dipetalonema viteae (Filarioidea). 5. Ultrastructural aspects of the antibody-dependent cell-mediated destruction of microfilariae. Tropenmedizin und Parasitologie, 31, 194200.Google ScholarPubMed
Schiller, E. L, D'antonio, R. & Marroquin, H. F. (1980) Intradermal reactivity of excretory and secretory products of onchocercal microfilariae. American Journal of Tropical Medicine and Hygiene, 29, 12151219.CrossRefGoogle ScholarPubMed
Sternberger, L. A. (1974). Immunocytochemistry. Prentice-Hall, Inc., Englewood Cliffs, New Jersey.Google Scholar
Wu, Y.-J. & Foor, W. E. (1980). Ascaris oocytes: ultrastructural and immunocytochemical changes during passage through the oviduct. Journal of Parasitology, 66, 439447.CrossRefGoogle ScholarPubMed