Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T22:52:31.469Z Has data issue: false hasContentIssue false

First report of a gryporhynchid tapeworm (Cestoda: Cyclophyllidea) from New Zealand and from an eleotrid fish, described from metacestodes and in vitro-grown worms

Published online by Cambridge University Press:  09 December 2011

B. Presswell*
Affiliation:
Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand9054
R. Poulin
Affiliation:
Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand9054
H.S. Randhawa
Affiliation:
Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand9054

Abstract

Metacestodes are often found in the body cavity of the common bully (Gobiomorphus cotidianus McDowall), from freshwater habitats in Otago, New Zealand. Identification of metacestodes relies only on the number, size and shape of the rostellar hooks. To attempt species determination, we cultivated metacestodes in vitro for up to 23 days, during which they matured to at least the male stage of development, although female organs were not discernable. Identified as members of the genus Paradilepis Hsü, 1935 (family Gryporhynchidae), these specimens are compared to previously described species, in particular P. minima (Goss, 1940), from Australia, the closest species, both geographically and morphologically. Although the size of scolex, suckers and proglottids differ significantly from those of P. minima, we are cautious about interpreting ‘adults’ grown in vitro, because we are unsure whether the artificial conditions alter development. For this reason, and because of the lack of female organs, we refrain from erecting a new species, and refer to the specimens as Paradilepis cf. minima until such time as the adults are found in the definitive host. With this proviso we present here a description of the in vitro-grown worms and the metacestodes as a preliminary study of this cestode. A molecular analysis of small subunit (SSU) rDNA sequences, shows the position of P. cf. minima and another gryporhynchid, Neogryporhynchus cheilancristrotus (Wedl, 1855), to be equivocal, but confirms their exclusion from the Dilepididae and Hymenolepididae. This is the first record of a gryporhynchid from New Zealand, and the first from the fish family Eleotridae.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arme, C. (1987) Cestoda. pp. 282317in (Eds) In vitro methods for parasite cultivation. Cambridge, Cambridge University Press.Google Scholar
Baer, J.G. & Bona, F.V. (1960) Révision des Cestodes Dilepididae Fuhrm., 1907 des Ardéiformes: note préliminaire. Bollettino dell'Istituto e Museo di Zoologia dell'Università di Torino 6, 91143(in French).Google Scholar
Barber, I. & Scharsack, J.P. (2010) The three-spined stickleback–Schistocephalus solidus system: an experimental model for investigating host–parasite interactions in fish. Parasitology 137, 411424.CrossRefGoogle ScholarPubMed
Beveridge, I. (2001) The use of life-cycle characters in studies of the evolution of cestodes. pp. 250256in (Eds) Interrelationships of the Platyhelminthes. London, Taylor and Francis.Google Scholar
Bona, F.V. (1994) Family Dilepididae. pp. 443554in (Eds) Keys to the cestode parasites of invertebrates. Wallingford, CAB International.Google Scholar
Boud, R. & Eldon, G.A. (1960) Investigation of large black shags in North Canterbury. Freshwater Fisheries Advisory Council (N.Z. Marine Department), Investigation Dept, 21 (unpublished).Google Scholar
Bray, R.A. (1974) A new genus of dilepidid cestode in Tilapia nilotica (L. 1757) and Phalacrocorax carbo (L., 1758) in Sudan. Journal of Natural History 8, 589596.CrossRefGoogle Scholar
Campbell, R. & Carvajal, J. (1979) Synonymy of the Phyllobothriid genera Rhodobothrium Linton, 1889, Inermiphyllidium Riser, 1955, and Sphaerobothrium Euzet, 1959 (Cestoda: Tetraphyllidea). Proceedings of the Helminthological Society, Washington 46, 8897.Google Scholar
Carvajal, J., Barros, C. & Santander, G. (1982) In vitro culture of Rhodobothrium mesodesmatum (Cestode: Tetraphyllidea) parasite of a Chilean clam. Helminthological Society of Washington 49, 226230.Google Scholar
Chambers, C.B., Cribb, T.H. & Jones, M. (2000) Tetraphyllidean metacestodes of teleosts of the Great Barrier Reef, and the use of in vitro cultivation to identify them. Folia Parasitologica 47, 285292.CrossRefGoogle Scholar
Chervy, L. (2002) The terminology of larval cestodes or metacestodes. Systematic Parasitology 52, 133.CrossRefGoogle Scholar
Chervy, L. (2009) Unified terminology for cestode microtriches: a proposal from the International Workshops on Cestode Systematics in 2002–2008. Folia Parasitologica 56, 199230.CrossRefGoogle ScholarPubMed
Ching, H.L. (1982) Report of the metacestode of Paradilepis simoni Rausch, 1949 (Cyclophyllidea: Dilepidae) from fish in British Columbia. Canadian Journal of Zoology 60, 184186.CrossRefGoogle Scholar
Clark, H.G. (1957) Cestodes from cormorants from South Australia. Transactions of the Royal Society of South Australia 80, 124134.Google Scholar
Devlin, C.M., Diamond, A.W. & Saunders, G.W. (2004) Sexing Arctic terns in the field and laboratory. Waterbirds 27, 314320.CrossRefGoogle Scholar
Dickinson, P. (1951) Stomach contents of New Zealand inland shags. Australian Journal of Marine and Freshwater Research 2, 245253.CrossRefGoogle Scholar
Falla, R.A. & Stokell, G. (1945) Investigation of the stomach contents of New Zealand freshwater shags. Transactions of the Royal Society of New Zealand 74, 320331.Google Scholar
Freeman, R.S. (1954) Paradilepis rugovaginosus n. sp. (Cestoda: Dilepididae) from the osprey, with notes on the genus Oligorchis Fuhrmann, 1906. Journal of Parasitology 40, 2228.CrossRefGoogle Scholar
Georgiev, B.B. & Vaucher, C. (2004) Arlenelepis harpiprioni gen. et sp. n. (Cestoda: Dilepididae) from Harpiprion caerulescens (Viellot) (Aves: Threskiornithidae). Folia Parasitologica 51, 327332.CrossRefGoogle Scholar
Goss, O.M. (1940) Platyhelminth and Acanthocephalan parasites of local shags. Journal of the Royal Society of Western Australia 26, 114.Google Scholar
Hall, T. (2005) Bioedit Sequence Alignment Editor, v.7.0.5.3. Carlsbad, California.Google Scholar
Hamilton, K.A. & Byram, J.E. (1974) Tapeworm development: the effects of urea on a larval Tetraphyllidean. Journal of Parasitology 60, 2028.CrossRefGoogle ScholarPubMed
Hemphill, A. (2010) Development and applications of cestode and trematode laboratory models. Parasitology 137, 329333.CrossRefGoogle Scholar
Hoberg, E.P., Jones, A. & Bray, R.A. (1999) Phylogenetic analysis among the families of the Cyclophyllidea (Eucestoda) based on comparative morphology, with new hypotheses for co-evolution in vertebrates. Systematic Parasitology 42, 5173.CrossRefGoogle ScholarPubMed
Hoberg, E.P., Mariaux, J. & Brooks, D.R. (2001) Phylogeny among orders of the Eucestoda (Cercomeromorphae): integrating morphology, molecules and total evidence. pp. 112126in (Eds) Interrelationships of the Platyhelminthes. London, Taylor and Francis.Google Scholar
Holland, N.D., Campbell, T.G., Garey, J.R., Holland, L.Z. & Wilson, N.G. (2009) The Florida amphioxus (Cephalochordata) hosts larvae of the tapeworm Acanthobothrium brevissime: natural history, anatomy and taxonomic identification of the parasite. Acta Zoologica 90, 7586.CrossRefGoogle Scholar
Hoole, D., Carter, V. & Dufour, S. (2010) Ligula intestinalis (Cestoda: Pseudophyllidea): an ideal fish–metazoan parasite model? Parasitology 137, 425438.CrossRefGoogle ScholarPubMed
Huelsenbeck, J.P. & Ronquist, F. (2001) MR BAYES: Bayesian inference of phylogeny. Bioinformatics 17, 754755.CrossRefGoogle Scholar
Huelsenbeck, J.P., Ronquist, F., Nielson, R. & Bollback, J.P. (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294, 23102314.CrossRefGoogle ScholarPubMed
Irwin, S.W.B., McKerr, G., Judge, B.C. & Moran, I. (1984) Studies on metacercarial excystment in Himasthla leptosoma (Trematoda: Echinostomatidae) and newly emerged metacercariae. International Journal for Parasitology 14, 415421.CrossRefGoogle Scholar
Jarecka, L. (1970) Life cycle of Valipora campylancristrota (Wedl, 1855) Baer and Bona 1958–1960 (Cestoda: Dilepididae) and the description of cercoscolex – a new type of cestode larva. Bulletin de L'Academie Polonaise des Sciences, série des sciences biologiques 18, 159163.Google ScholarPubMed
Joyeux, C.H. & Baer, J.G. (1950) The status of the cestode genus Meggittiella Lopez-Neyra, 1942. Proceedings of the Helminthological Society, Washington 17, 9195.Google Scholar
Justine, J.-L. (2001) Spermatozoa as phylogenetic characters for the Platyhelminthes. pp. 231238in (Eds) Interrelationships of the Platyhelminthes. London, Taylor and Francis.Google Scholar
Kennedy, M., Gray, R.D. & Spencer, H.G. (2000) The phylogenetic relationships of the shags and cormorants: can sequence data resolve a disagreement between behavior and morphology? Molecular Phylogenetics and Evolution 17, 345359.CrossRefGoogle ScholarPubMed
Kennedy, M., Valle, C.A. & Spencer, H.G. (2009) The phylogenetic position of the Galapagos cormorant. Molecular Phylogenetics and Evolution 53, 9498.CrossRefGoogle ScholarPubMed
Khalil, L.F. (1961) On a new cestode, Paradilepis maleki sp. nov. (Dilepididae), from a Sacred Ibis in the Sudan. Journal of Helminthology 35, 255258.CrossRefGoogle Scholar
Khalil, L.F., Jones, A., Bray, R.A. (Eds) (1994) Keys to the cestode parasites of vertebrates. Wallingford, UK, CAB International.CrossRefGoogle Scholar
Littlewood, D.T.J. & Olson, P.D. (2001) Small subunit rDNA and the Platyhelminthes: signal, noise, conflict and compromise. pp. 262278in (Eds) Interrelationships of the Platyhelminthes. London, Taylor and Francis.Google Scholar
Littlewood, D.T.J., Rohde, K. & Clough, K.A. (1999) The interrelationships of all major groups of Platyhelminthes: phylogenetic evidence from morphology and molecules. Biological Journal of the Linnean Society 66, 75114.CrossRefGoogle Scholar
Maddison, D.R. & Maddison, W.P. (2005) MacClade 4, version 4.07. Sunderland, Massachusetts, Sinauer Associates.Google Scholar
Mahon, J. (1955) Contributions to the genus Paradilepis Hsü, 1935. Parasitology 45, 6378.CrossRefGoogle Scholar
Mariaux, J. (1998) A molecular phylogeny of the Eucestoda. Journal of Parasitology 84, 114124.CrossRefGoogle ScholarPubMed
Marigo, A.M., , C.T. & Miquel, J. (2010) Spermiogenesis and spermatozoon ultrastructure of the dilepidid cestode Molluscotaenia crassiscolex (von Linstow, 1890), an intestinal parasite of the common shrew Sorex araneus. Acta Zoologica 92, 116125.CrossRefGoogle Scholar
Markoski, M.M., Bizarro, C.V., Farias, S., Espinoza, I., Galanti, N., Zaha, A. & Ferreira, H.B. (2003) In vitro segmentation induction of Mesocestoides corti (Cestoda) Tetrathyridia. Journal of Parasitology 89, 2734.CrossRefGoogle ScholarPubMed
Mayhew, R.L. (1925) Studies on the avian species of the cestode family Hymenolepididae. Illinois Biological Monographs 10, 1125.Google Scholar
McDowall, R.M. (1990) New Zealand freshwater fishes: A natural history and guide. Auckland, New Zealand, Heinemann Reed, MAF Publishing.Google Scholar
McDowall, R.M. (2010) New Zealand freshwater fishes: an historical and ecological biogeography. Fish and Fisheries Series 32. 470 pp. Dortrecht, Springer.Google Scholar
McLaughlin, J.D. (1974) A redescription of Paradilepis longivaginosus (Mayhew, 1925) (Cestoda: Dilepididae) and a comparison with Paradilepis simoni Rausch, 1949 and Paradilepis rugovaginosus Freeman, 1954. Canadian Journal of Zoology 52, 11851190.CrossRefGoogle Scholar
Murai, E. & Georgiev, B.B. (1987) Redescription of three dilepidid species from New Guinean Megapodius freycinet (Aves: Galliformes) erected by Sándor Kotlán, with the description of Kotlanolepis gen. n. (Cestoda). Parasitologia Hungarica 20, 6579.Google Scholar
Olson, P.D. & Caira, J.N. (1999) Evolution of the major lineages of tapeworms (Platyhelminthes: Cestoidea) inferred from 18S ribosomal DNA and elongation factor-1a. Journal of Parasitology 85, 11341159.CrossRefGoogle Scholar
Olson, P.D., Littlewood, D.T.J., Bray, R.A. & Mariaux, J. (2001) Interrelationships and evolution of the tapeworms (Platyhelminthes: Cestoda). Molecular Phylogenetics and Evolution 19, 443467.CrossRefGoogle ScholarPubMed
Ortega-Olivares, M.P., Barrera-Guzmán, A.O., Haasová, I., Salgado-Maldonado, G., Guillén-Hernández, S. & Scholz, T. (2008) Tapeworms (Cestoda: Gryporhynchidae) of fish-eating birds (Ciconiiformes) from Mexico: new host and geographical records. Comparative Parasitology 75, 182195.CrossRefGoogle Scholar
Osuna-Carrillo, A. & Mascaró-Lazcano, M.C. (1982) The in vitro cultivation of Taenia pisiformis to sexually mature adults. Parasitology Research 67, 6771.Google ScholarPubMed
Posada, D. & Buckley, T.R. (2004) Model selection and model averaging in phylogenetics: advantages of the AIC and Bayesian approaches over likelihood ratio tests. Systematic Biology 53, 793808.CrossRefGoogle ScholarPubMed
Posada, D. & Crandall, K.A. (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14, 817818.CrossRefGoogle ScholarPubMed
Poulin, R. (2004) Parasite species richness in New Zealand fishes: a grossly underestimated component of biodiversity? Diversity and Distributions 10, 3137.CrossRefGoogle Scholar
Ryzhikov, K.M., Rysavy, B., Khokhlova, I.G., Tolkatcheva, L.M. & Kornyushin, V.V. (1985) Helminths of the fish-eating birds of the Palearctic region II: Cestoda and Acanthocephales. Prague, Academia.Google Scholar
Schmidt, G.D. (1986) CRC handbook of tapeworm identification. 675 pp. Florida, CRC Press.Google Scholar
Scholz, T. & Salgado-Maldonado, G. (2001) Metacestodes of the family Dilepididae (Cestoda: Cyclophyllidea) parasitising fishes in Mexico. Systematic Parasitology 49, 2339.CrossRefGoogle ScholarPubMed
Scholz, T., Kuchta, R. & Salgado-Maldonado, G. (2002) Cestodes of the family Dilepididae (Cestoda: Cyclophyllidea) from fish-eating birds in Mexico: a survey of species. Systematic Parasitology 52, 171182.CrossRefGoogle ScholarPubMed
Scholz, T., Bray, R.A., Kuchta, R. & Repova, R. (2004) Larvae of gryporhynchid cestodes (Cyclophyllidea) from fish: a review. Folia Parasitologica 51, 131152.CrossRefGoogle ScholarPubMed
Scholz, T., Boane, C. & Saraiva, A. (2008) New metacestodes of Gryporhynchid tapeworms (Cestoda: Cyclophyllidea) from carp (Cyprinus carpio Linnaeus, 1758) from Mozambique, Africa. Comparative Parasitology 75, 315320.CrossRefGoogle Scholar
Smyth, J.D. (1952) Studies on Tapeworm physiology: VI. Effect of temperature on the maturation in vitro of Schistocephalus solidus. Journal of Experimental Biology 29, 304309.CrossRefGoogle Scholar
Spassky, A.A. (1961) Breve revisione di Hymenolepididae: Parte prima. Parassitologia 3, 159178.Google Scholar
Spassky, A.A. (1963) Hymenolepididae – tapeworms of wild and domestic birds. Part I. in (Ed.) Principles of Cestodology. Vol. II 417 pp. Moscow, Izdavatel'stvo Akademya Nauk SSSR (in Russian).Google Scholar
Spassky, A.A. (1995) Changes in the type of symmetry in higher cestodes during ontogeny. Doklady. Biological Sciences 343, 571573.Google Scholar
Spassky, A.A. & Spasskaya, L.P. (1973) [A new subfamily Gryporhynchinae subfam. n. (Cestoda: Dilepididae)]. Izvestiia Akademii Nauk Moldavskoi SSR. Seriia Biologicheskikh i Khimicheskikh Nauk 5, 5658(in Russian).Google Scholar
Willms, K. & Zurabian, R. (2010) Taenia crassiceps: in vivo and in vitro models. Parasitology 137, 335346.CrossRefGoogle ScholarPubMed
Wong, W.L., Tan, W.B. & Lim, L.H.S. (2006) Sodium dodecyl sulphate as a rapid clearing agent for studying the hard parts of monogeneans and nematodes. Journal of Helminthology 80, 8790.CrossRefGoogle ScholarPubMed
Yoneva, A., Świderski, Z., Georgieva, K., Nikolov, P., Mizinska, Y. & Georgiev, B.B. (2008) Spermiogenesis and sperm ultrastructure of Valipora mutabilis Linton, 1927 (Cestoda, Cyclophyllidea, Gryporhynchidae). Parasitology Research 103, 13971405.CrossRefGoogle ScholarPubMed