Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-27T22:16:03.391Z Has data issue: false hasContentIssue false

Evaluation of anthelmintic activity of biologically synthesized silver nanoparticles against the gastrointestinal nematode, Haemonchus contortus

Published online by Cambridge University Press:  04 July 2016

R.S. Tomar
Affiliation:
Department of Zoology, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra-282005, India
S. Preet*
Affiliation:
Department of Zoology, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra-282005, India
*
*Fax: +91-0562-2801226 E-mail: preetshabd@gmail.com

Abstract

The present study focuses on the in vitro anthelmintic activity of silver nanoparticles (AgNPs) synthesized using the aqueous extract of Azadirachta indica against Haemonchus contortus. The synthesized AgNPs were characterized by ultraviolet–visible (UV-Vis) spectrophotometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) studies. The UV-Vis spectrum exhibited a sharp peak at 420 nm, which was validated by electron microscopy, indicating the preparation of spherical nanoparticles measuring 15–25 nm in size. The in vitro study was based on an egg hatch assay (EHA) and adult motility inhibition assays. Six concentrations of AgNPs were used for EHA, ranging from 0.00001 to 1.0 μg/ml, and a range of 1–25 μg/ml was used for adult worms. The highest concentration induced 85 ± 2.89% egg hatch inhibition. The IC50 value for EHA was 0.001 μg/ml, whereas in vitro adult H. contortus motility inhibition was produced at 7.89 μg/ml (LC50). The effectiveness of A. indica leaf extract (aqueous) was also evaluated, which showed an IC50 value for EHA of 115.67 μg/ml, while the LC50 against adult H. contortus was 588.54 μg/ml. The overall findings of the present study show that the experimental plant extract contains reducing properties for the synthesis of AgNPs which, in turn, showed potent anthelmintic properties. This is the first report where AgNPs have been tested for their anthelmintic properties in an in vitro model.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W.S. (1925) A method for computing the effectiveness of an insecticide. Journal of Economic Entomology 18, 265267.Google Scholar
Adamu, M., Naidoo, V. & Eloff, J.N. (2013) Efficacy and toxicity of thirteen plant leaf acetone extracts used in ethnoveterinary medicine in South Africa on egg hatching and larval development of Haemonchus contortus . BMC Veterinary Research 9, 3845.Google Scholar
Ademola, I.O. & Eloff, J.N. (2011) Anthelmintic activity of acetone extract and fractions of Vernonia amygdalina against Haemonchus contortus eggs and larvae. Tropical Animal Health and Production 43, 521527.Google Scholar
Akkari, H., Dargouth, M.A. & Ben Salem, H. (2008) Preliminary investigation of the anti-nematode activity of Acacia cyanophylla Linl: excretion of gastrointestinal nematode eggs in lambs browsing A. cyanophylla with and without PEG or grazing native grass. Small Ruminant Research 74, 7883.Google Scholar
Akkari, H., Rtibi, K., B'chir, F., Rekik, M., Darghouth, M.A. & Gharbi, M. (2014) In vitro evidence that the pastoral Artemisia campestris species exerts an anthelmintic effect on Haemonchus contortus from sheep. Veterinary Research Communications 38, 249255.Google Scholar
Barrau, E., Fabre, N., Fouraste, I. & Hoste, H. (2005) Effect of bioactive compounds from Sainfoin (Onobrychis viciifolia Scop.) on the in vitro larval migration of Haemonchus contortus: role of tannins and flavonol glycosides. Parasitology 131, 531538.Google Scholar
Biswas, K., Chattopadhyay, I., Banerjee, R.K. & Bandyopadhyay, U. (2002) Biological activities and medicinal properties of neem (Azadirachta indica). Current Science 82, 13361345.Google Scholar
Buske, R., Santurio, J.M., de Oliveira, C.V., Bianchini, L.A., da Silva, J.H.S. & de la Rue, M.L. (2013) In vitro influence of temperature on the biological control activity of the fungus Duddingtonia flagrans against Haemonchus contortus in sheep. Parasitology Research 112, 473478.Google Scholar
Coles, G.C., Bauer, C., Borgsteede, F.H.M., Geerts, S., Klei, T.R., Taylor, M.A. & Waller, P.J. (1992) World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.). Methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Veterinary Parasitology 44, 3544.Google Scholar
Costa, C.T.C., Bevilaqua, C.M.L., Maciel, M.V., Camurca-Vasconcelos, A.L.F., Morais, S.M., Monteiro, M.V.B., Farias, V.M., da Silva, M.V. & Souza, M.M.C. (2006) Anthelmintic activity of Azadirachta indica A. Juss. against sheep gastrointestinal nematodes. Veterinary Parasitology 137, 306310.Google Scholar
Costa, C.T.C., Bevilaqua, C.M.L., Camurça-Vasconcelos, A.L., Maciel, M.V., Morais, S.M., Castor, C.M.S., Braga, R.R. & Oliveira, L.M.B. (2008) In vitro ovicidal and larvicidal activity of Azadirachta indica extracts on Haemonchus contortus . Small Ruminant Research 74, 284287.Google Scholar
Eguale, T., Tilahun, G., Debella, A., Feleke, A. & Makonnen, E. (2007a) In vitro and in vivo anthelmintics activity of crude extracts of Coriandrum sativum against Haemonchus contortus . Journal of Ethnopharmacology 110, 428433.Google Scholar
Eguale, T., Tilahun, G., Debella, A., Feleke, A. & Makonnen, E. (2007b) Haemonchus contortus: in vitro and in vivo anthelmintics activity of aqueous and hydro-alcoholic of Hedera helix . Experimental Parasitology 52, 99109.Google Scholar
Finney, D.J. (1971) Probit analysis. 3rd edn. Cambridge, Cambridge University Press.Google Scholar
Geary, T.G., Sangster, N.C. & Thompson, D.P. (1999) Frontiers in anthelmintic pharmacology. Veterinary Parasitology 84, 275295.Google Scholar
Githiori, J.B., Hoglund, J., Waller, P.J. & Baker, R.L. (2004) Evaluation of anthelmintic properties of some plants used as livestock dewormers against Haemonchus contortus infections in sheep. Veterinary Parasitology 129, 245253.Google Scholar
Gregory, L., Yoshihara, E., Ribeiro, B.L.M., Silva, L.K.F., Marques, E.C., Meira, E.B.S. Jr, Rossi, R.S., Sampaio, P.H., Louvandini, H. & Hasegawa, M.Y. (2015) Dried, ground banana plant leaves (Musa spp.) for the control of Haemonchus contortus and Trichostrongylus colubriformis infections in sheep. Parasitology Research 114, 45454551.Google Scholar
Hordegen, P., Cabaret, J.H., Hertzberg, A., Langhans, W.C. & Maurer, V. (2006) In vitro screening of six anthelmintic plant products against larval Haemonchus contortus with a modified methyl-thiazolyl-tetrazolium reduction assay. Journal of Ethnopharmacology 108, 8589.Google Scholar
Hoste, H., Torres-Acosta, J.F.J., Paolini, V., Aguilar-Caballero, A., Etter, E., Lefrileux, Y., Chartier, C. & Broqua, C. (2005) Interactions between nutrition and gastrointestinal infections with parasitic nematodes in goats. Small Ruminant Research 60, 141151.Google Scholar
Hoste, H., Jackson, F., Athanasiadou, S., Thamsborg, S.M. & Hoskin, S.O. (2006) The effects of tannin-rich plants on parasitic nematodes in ruminants. Trends in Parasitology 22, 253261.Google Scholar
Hounzangbe-Adote, M.S., Paolini, V., Fouraste, I., Moutairou, K. & Hoste, H. (2005) In vitro effects of four tropical plants on three life cycle stages of the parasitic nematode, Haemonchus contortus . Research in Veterinary Science 78, 155160.Google Scholar
Kamaraj, C., Rahuman, A.A., Elango, G., Bagavan, A. & Zahir, A.A. (2011) Anthelmintic activity of botanical extracts against sheep gastrointestinal nematodes, Haemonchus contortus . Parasitology Research 109, 3745.Google Scholar
Kanojiya, D., Shankar, D., Sudan, V., Jaiswal, A.K. & Parashar, R. (2015) In vitro and in vivo efficacy of extracts of leaves of Eucalyptus globulus on ovine gastrointestinal nematodes. Parasitology Research 114, 141148.Google Scholar
Kar, P.K., Murmu, S., Saha, S., Tandon, V. & Acharya, K. (2014) Anthelmintic efficacy of gold nanoparticles derived from a phytopathogenic fungus, Nigrospora oryzae . PLoS One 9(1), e84693.Google Scholar
Lange, K.C., Olcott, D.D., Miller, J.E., Mosjidis, J.A., Terrill, T.H., Burke, J.M. & Kearney, M.T. (2006) Effect of Sericea lespedeza (Lespedeza cuneata) fed as hay, on natural and experimental Haemonchus contortus infections in lambs. Veterinary Parasitology 141, 273278.Google Scholar
López-Aroche, U., Salinas-Sánchez, D.O., Mendoza de Gives, P., López-Arellano, M.E., Liébano-Hernández, E., Valladares-Cisneros, G., Arias-Ataide, D.M. & Hernández-Velázquez, V. (2008) In vitro nematicidal effects of medicinal plants from the Sierra de Huautla, Biosphere Reserve, Morelos, Mexico against Haemonchus contortus infective larvae. Journal of Helminthology 82, 2531.Google Scholar
Maphosa, V., Masika, P.J., Bizimenyera, E.S. & Eloff, J.N. (2010) In vitro anthelminthic activity of crude aqueous extracts of Aloe ferox, Leonotis leonurus and Elephantorrhiza elephantina against Haemonchus contortus . Tropical Animal Health and Production 42, 301307.Google Scholar
Marie-Magdeleine, C., Mahieu, M., D'Alexis, S., Philibert, L. & Archimede, H. (2010) In vitro effects of Tabernaemontana citrifolia extracts on Haemonchus contortus . Research Veterinary Science 89, 8892.Google Scholar
Marimathu, S., Rahuman, A.A, Rajkumar, G., Santoshkumar, T., Kirthi, A.V., Jayaseelan, C., Bagavan, A., Zahir, A.A., Elango, G. & Kamaraj, C. (2011) Evalution of green synthesized silver nanoparticles against parasites. Parasitology Research 108, 15411549.Google Scholar
Melo, A.C.F.L., Reis, I.F., Bevilaqua, C.M.L., Vieira, L.S., Echevarria, F.M. & Melo, L.M. (2003) Nematodeos resistentes a anti-helminticos em rebanhos de ovinos e caprinos do estado do Ceará, Brasil. Ciencia Rural 33, 339344.Google Scholar
Min, B.R., Pomroy, W.E., Hart, S.P. & Sahlu, T. (2004) The effect of short-term consumption of a forage containing condensed tannins on gastro-intestinal nematode parasite infections in grazing wether goats. Small Ruminant Research 51, 279283.Google Scholar
More, Y.W., Raut, R.R. & Taware, A.S. (2015) Review on biological activities of Azadirachta indica (Neem) and its medicinal uses. International Journal of Informative Futuristic Research 2, 13271334.Google Scholar
Roy, B., Lalchhandama, K. & Dutta, B.K. (2008a) Scanning electron microscopic observations on the in vitro anthelmintic effects of Millettia pachycarpa on Raillietina echinobothrida . Pharmacognosy Magazine 4, 2026.Google Scholar
Roy, B., Dasgupta, S. & Tandon, V. (2008b) Ultrastructural observations on tegumental surface of Raillietina echinobothrida and its alterations caused by root-peel extract of Millettia pachycarpa . Microscopic Research Techniques 71, 810815.Google Scholar
Said, D.E., Elsamed, L.M. & Gohar, Y.M. (2012) Validity of silver, chitosan and curumin nanoparticles as anti-Giardia agents. Parasitology Research 111, 545554.Google Scholar
Shaik, S.A., Terrill, T.H., Miller, J.E., Kouakou, B., Kannan, G., Kallu, R.K. & Mosjidis, J.A. (2004) Effects of feeding Sericea lespedeza hay to goats infected with Haemonchus contortus . South African Journal of Animal Sciences 34, 248250 Google Scholar
Shankar, S.S., Rai, A., Ahmad, A. & Sastry, M. (2004) Rapid synthesis of Au, Ag, and bimetallic Au core Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science 275, 496502.Google Scholar
Singh, D., Swarnkar, C.P. & Khan, F.A. (2002) Anthelmintic resistance in gastrointestinal nematodes of livestock in India. Journal of Veterinary Parasitology 16, 115130.Google Scholar
Subapriya, R. & Nagini, S. (2005) Medicinal properties of neem leaves: a review. Current Medicinal Chemistry – Anti-cancer Agents 5, 149156.Google Scholar
Suteky, T. & Dwatmadji, . (2011) Anthelmintic activity of Melastoma malabatricum extract on Haemonchus contortus activity in vitro . Asian Journal of Pharmaceutical and Clinical Research 4, 6870.Google Scholar
Tandon, V., Lyndem, L.M., Kar, P.K., Pal, P., Das, B. & Rao, H.S.P. (2004) Anthelmintic efficacy of rhizome-pulp extract of Stephania glabra and aerial root extract of Trichosanthes multiloba in vitro: two indigenous plants in Shillong, India. Journal of Parasitic Diseases 28, 3744.Google Scholar
Tiwari, R., Verma, A.K., Chakraborty, S., Dhama, K. & Singh, S.V. (2014) Neem (Azadirachta indica) and its potential for safeguarding the health of animals and humans: a review. Journal of Biological Sciences 14, 110123.Google Scholar
USEPA (US Environmental Protection Agency). (2010) Statistical analysis for biological methods: EPA probit analysis program Version 1.5. Available at www.epa.gov/eerd/stat2.htm (accessed September 2010).Google Scholar
Vargas-Magaña, J.J., Torres-Acosta, J.F., Aguilar-Caballero, A.J., Sandoval-Castro, C.A., Hoste, H. & Chan-Pérez, J.A. (2014) Anthelmintic activity of acetone–water extracts against Haemonchus contortus eggs: interactions between tannins and other plant secondary compounds. Veterinary Parasitology 206, 322327.Google Scholar
Waller, P.J. (1997) Anthelmintic resistance. Veterinary Parasitology 72, 391412.Google Scholar
Waller, P.J. (2003) The future of anthelmintics in sustainable parasite control programs for livestock. Helminthologia 40, 97102.Google Scholar
Zhu, L., Dai, J.L., Yang, L. & Qiu, J. (2013) In vitro ovicidal and larvicidal activity of the essential oil of Artemisia lancea against Haemonchus contortus (Strongylida). Veterinary Parasitology 195, 112117.Google Scholar