Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-11T11:08:37.213Z Has data issue: false hasContentIssue false

Endoparasite fauna of five Gadiformes fish species from the coast of Chile: host ecology versus phylogeny

Published online by Cambridge University Press:  21 January 2011

R.A. Chávez
Affiliation:
Instituto de Investigaciones Oceanológicas, Facultad de Recursos del Mar, Universidad de Antofagasta, PO Box 170, Antofagasta, Chile
M.T. González
Affiliation:
Instituto de Investigaciones Oceanológicas, Facultad de Recursos del Mar, Universidad de Antofagasta, PO Box 170, Antofagasta, Chile
M.E. Oliva*
Affiliation:
Instituto de Investigaciones Oceanológicas, Facultad de Recursos del Mar, Universidad de Antofagasta, PO Box 170, Antofagasta, Chile
I.M. Valdivia
Affiliation:
Instituto de Investigaciones Oceanológicas, Facultad de Recursos del Mar, Universidad de Antofagasta, PO Box 170, Antofagasta, Chile
*
*Fax: 56-55-637804 E-mail: meoliva@uantof.cl

Abstract

The aims of the present study were to compare, using multivariate analyses, the degree of similarity of the endoparasite fauna of five fish species belonging to the order Gadiformes: Merluccius gayi, Merluccius australis, Macruronus magellanicus (Gadoidei) and Micromesistius australis and Nezumia pulchella (Macrouroidei), from the southern and central Chilean coast, and to evaluate whether the composition of the endoparasite fauna was determined by phylogenetic or ecological relationships. We employed our database of Merluccius australis, M. magellanicus and Micromesistius australis, which was complemented with published information for M. magellanicus, Merluccius australis, Micromesistius australis, M. gayi and N. pulchella. A higher number of endoparasite species was recorded for Merluccius australis, Micromesistius australis and M. magellanicus, namely Anisakis sp. and Hepatoxylon trichiuri, which is the most prevalent parasite among these hosts. Aporocotyle wilhelmi and Hysterothylacium sp. were detected only in M. gayi, whereas Lepidapedon sp. was found exclusively in N. pulchella. These results suggest that fish ecology rather than host phylogeny was the most important factor for the determination of similarity in parasite composition. This result could be explained by the similar trophic patterns of hosts and by the predominance of generalist larval species among these fish parasite communities.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguayo, M. (1995) Biology and fisheries of Chilean hakes (M. gayi and M. australis). pp. 305338in Alheit, J. & Pitcher, T.J. (Eds) Biology, fisheries and markets. London, Chapman & Hall.Google Scholar
Aldana, M., Pulgar, J.M., Ogalde, F. & Ojeda, F.P. (2002) Morphometric and parasitological evidence for ontogenetic and geographical dietary shifts in intertidal fishes. Bulletin of Marine Science 70, 5574.Google Scholar
Arancibia, H. & Fuentealba, M. (1993) Análisis de la alimentación de Merluccius gayi gayi (Guichenot, 1848) de Chile central, en el largo plazo. Biología Pesquera 22, 511.Google Scholar
Bray, R.A. & des Clers, S.A. (1992) Multivariate analyses of metrical features in the Lepidapedon elongatum (Lebour, 1908) species-complex (Digenea: Lepocreadiidae) in deep and shallow water gadiform fishes of the NE Atlantic. Systematic Parasitology 21, 223232.CrossRefGoogle Scholar
Brooks, D.R. (1980) Allopatric speciation and non-interactive parasite community structure. Systematic Zoology 29, 192203.CrossRefGoogle Scholar
Bush, A.O., Aho, J.M. & Kennedy, C.R. (1990) Ecological versus phylogenetic determinants of helminth parasite community richness. Evolutionary Ecology 4, 120.CrossRefGoogle Scholar
Bush, A.O., Lafferty, K.D., Lotz, J.M. & Shostak, A.W. (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology 83, 575580.CrossRefGoogle Scholar
Esch, G.W., Bush, A.O. & Aho, J.M. (1990) Parasite communities: Patterns and process. London, Chapman & Hall.Google Scholar
Fernández, J. (1985) Estudio parasitológico de Merluccius australis (Hutton, 1872) (Pisces: Merlucciidae): Aspectos sistemáticos, estadísticos y zoogeográficos. Boletín de la Sociedad de Biología de Concepción 56, 3141.Google Scholar
Froese, R. & Pauly, D. (2010) FishBase. World Wide Web electronic publication, available athttp://www.fishbase.org>, version (accessed September 2010).,+version+(accessed+September+2010).>Google Scholar
George-Nascimento, M. (1996) Populations and assemblages of parasites in hake, Merluccius gayi, from the southern Pacific Ocean: stock implications. Journal of Fish Biology 48, 557568.CrossRefGoogle Scholar
George-Nascimento, M. & Arancibia, H. (1994) La fauna parasitaria y la morfometría de la merluza austral Merluccius australis (Hutton) como indicadoras de unidades de stock. Biología Pesquera 23, 3147.Google Scholar
George-Nascimento, M. & Huet, B. (1984) Una aproximación ecológica al estudio del parasitismo en el congrio negro Genypterus maculatus (Tschudi) (Pisces: Ophidiidae). Biología Pesquera 13, 2330.Google Scholar
González, L. (2005) Diagnostico Merluza del Sur y Congrio Dorado en aguas interiores de la XII Región. Informe Final Fondema Magallanes y Antártica Chilena. Technical report. Available athttp://164.77.209.178/gorenew/ESTUDIOS/Archivos/Archivo%20Estudios/20196777/Resumen_MerluzaYCongrio.pdf (accessed 30 June 2010).Google Scholar
González, M.T. & Oliva, M.E. (2006) Similarity and structure of the ectoparasite communities of rockfish species from the southern Chilean coast in a temporal scale. Parasitology 133, 335343.CrossRefGoogle Scholar
Harvey, P.H. & Pagel, H. (1991) The comparative method in evolutionary biology. Oxford, Oxford University Press.CrossRefGoogle Scholar
Lillo, S., Céspedes, R., Díaz, E. & Ojeda, V. (2004) Evaluación Hidroacústica del Stock parental de merluza de tres aletas en su unidad de pesquería, año 2003. Technical report FIP 2003-10. pp. 32–35. Available atwww.fip.cl (accessed 30 June 2010).Google Scholar
Lillo, S., Céspedes, R., Ojeda, V., Balbontín, F., Bravo, R., Saavedra, A., Barbieri, M.A. & Vera, C. (2005) Evaluación del stock desovante de merluza del Sur y merluza de cola en la zona Sur Austral año 2004. Technical report FIP 2004-07. pp. 60–63. Available atwww.fip.cl (accessed 30 June 2010).Google Scholar
Mattiucci, S. & Nascetti, G. (2007) Advances and trends in the molecular systematics of anisakid nematodes, with implications for their evolutionary ecology and host–parasite co-evolutionary processes. Advances in Parasitology 66, 47138.CrossRefGoogle Scholar
Mladineo, I. (2006) Hepatoxylon trichiuri (Cestoda: Trypanorhyncha) plerocercoids in cage-reared northern bluefin tuna, Thunnus thynnus (Osteichthyes: Scombridae). Acta Adriatica 47, 7983.Google Scholar
Morand, S., Cribb, T.H., Kulbicki, M., Rigby, M.C., Chauvet, C., Dufour, V., Faliex, E., Galzin, R., Lo, C.M., Lo-Yat, A., Pichelin, S. & Sasal, P. (2000) Endoparasite species richness of New Caledonian butterfly fishes: host density and diet matter. Parasitology 121, 6573.CrossRefGoogle ScholarPubMed
Muñoz, G., Valdebenito, V. & George-Nascimento, M. (2002) La dieta y la fauna de parásitos metazoos del torito Bovichthys chilensis Regan 1914 (Pisces:Bovichthydae) en la costa de Chile centro-sur: variaciones geográficas y ontogenéticas. Revista Chilena de Historia Natural 75, 661671.CrossRefGoogle Scholar
Muñoz, G., Grutter, R.A. & Cribb, T.H. (2006) Endoparasite communities of five fish species (Labridae: Cheilininae) from Lizard Island: how important is the ecology and phylogeny of the hosts? Parasitology 132, 363374.CrossRefGoogle ScholarPubMed
Niklitschek, E., Canales, C., Ferrada, S., Galleguillos, R., George-Nascimento, M., Hernandez, E., Herranz, C., Lafon, A., Roa, R. & Toledo, P. (2009) Unidades Poblacionales de Merluza de Tres Aletas (Micromesistius australis). Technical report FIP. pp. 70–76. Available atwww.fip.cl (accessed 30 June 2010).Google Scholar
Oliva, M.E. (2001) Metazoan parasites of Macruronus magellanicus from southern Chile as biological tags. Journal of Fish Biology 58, 16171622.CrossRefGoogle Scholar
Oliva, M.E., Gonzalez, M.T. & Acuña, E. (2004) Metazoan parasite fauna as biological tag for the habitat of the Flounder, Hippoglossina macrops from Northern Chile, in a depth gradient. Journal of Parasitology 90, 13741377.CrossRefGoogle Scholar
Oliva, M.E., Fernández, I., Oyarzun, C. & Murillo, C. (2008) Metazoan parasites of the stomach of Dissostichus eleginoides Smitt 1898 (Pisces: Notothenidae) from southern Chile: A tool for stock discrimination? Fisheries Research 91, 119122.CrossRefGoogle Scholar
Poulin, R. (1995) Phylogeny, ecology, and the richness of parasite communities in vertebrates. Ecological Monographs 65, 283302.CrossRefGoogle Scholar
Poulin, R. (1996) Richness, nestedness, and randomness in parasite infracommunity structure. Oecologia 105, 545551.CrossRefGoogle ScholarPubMed
Poulin, R. (2010) Decay of similarity with host phylogenetic distance in parasite faunas. Parasitology 137, 733741.CrossRefGoogle ScholarPubMed
Poulin, R. & Morand, S. (1999) Geographical distances and the similarity among parasite communities of conspecific host populations. Parasitology 119, 369374.CrossRefGoogle ScholarPubMed
Poulin, R. & Rohde, K. (1997) Comparing the richness of metazoan ectoparasite communities of marine fishes: controlling for host phylogeny. Oecologia 110, 278283.CrossRefGoogle ScholarPubMed
Riffo, R. & George-Nascimento, M. (1992) Variaciones de la abundancia de larvas de Anisakis sp. y Hysterothylacium sp. (Nematoda: Anisakidae) en la merluza de cola Macruronus magellanicus Lonnberg 1862: La importancia del sexo, tamaño corporal y dieta del hospedador. Estudios Oceanológicos 11, 7984.Google Scholar
Roa-Varón, A. & Ortí, G. (2009) Phylogenetic relationships among families of Gadiformes (Teleostei, Paracanthopterygii) based on nuclear and mitochondrial data. Molecular Phylogenetics and Evolution 52, 688704.CrossRefGoogle ScholarPubMed
Rohde, K., Hayward, C. & Heap, M. (1995) Aspect of the ecology of metazoan ectoparasites of fishes. International Journal for Parasitology 25, 945970.CrossRefGoogle ScholarPubMed
Saavedra, A., Correa, V., Céspedes, R., Ojeda, V., Adarme, L., Días, E., Oliva, J. & Rojas, P. (2006) Evaluación hidroacústica del Stock parental de merluza de tres aletas en su unidad de pesquería año, 2005. Technical report FIP 2005-06. pp. 71–72. Available atwww.fip.cl (accessed 30 June 2010).Google Scholar
Sakanari, A.J. & McKerrow, H.M. (1989) Anisakiasis. Clinical Microbiology Reviews 2, 278284.CrossRefGoogle ScholarPubMed
Salinas, X., González, M.T. & Acuña, E. (2008) Metazoan parasites of the thumb grenadier Nezumia pulchella, from the south-eastern Pacific of Chile, and their use for discrimination of host populations. Journal of Fish Biology 73, 683691.CrossRefGoogle Scholar
Sielfeld, W. & Vargas, M. (1996) Composición y estructura de la ictiofauna demersal en la zona norte de Chile. Investigaciones Marinas 24, 317.CrossRefGoogle Scholar
Vázquez-López, C., Armas-Serra, C. & Rodríguez-Caabeiro, F. (2001) Gymnorhynchus gigas: Taxonomía, morfología, biología y aspectos sanitarios. Analecta veterinaria 2, 3849.Google Scholar
Vickery, W.L. & Poulin, R. (1998) Parasite extinction and colonization and the evolution of parasite communities: a simulation study. International Journal for Parasitology 28, 727737.CrossRefGoogle ScholarPubMed
Villalba, C. & Fernández, J. (1986) Dos nuevas especies de trematodos parásitos de peces marinos de Chile. Parasitologia al Dia 10, 4551.Google Scholar