Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-25T08:12:55.822Z Has data issue: false hasContentIssue false

Cytochrome c oxidase subunit I haplotype reveals high genetic diversity of Angiostrongylus malaysiensis (Nematoda: Angiostrongylidae)

Published online by Cambridge University Press:  23 March 2017

P. Eamsobhana*
Affiliation:
Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
H.S. Yong
Affiliation:
Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
S.L. Song
Affiliation:
Institute of Ocean and Earth Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
A. Prasartvit
Affiliation:
Department of Disease Control, Ministry of Public Health, Nonthaburi 11000, Thailand
S. Boonyong
Affiliation:
Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
A. Tungtrongchitr*
Affiliation:
Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand

Abstract

The rat lungworm Angiostrongylus malaysiensis is a metastrongyloid nematode parasite. It has been reported in Malaysia, Thailand, Laos, Myanmar, Indonesia and Japan. In this study, A. malaysiensis adult worms recovered from the lungs of wild rats in different geographical regions/provinces in Thailand were used to determine their haplotype by means of the mitochondrial partial cytochrome c oxidase subunit I (COI) gene sequence. The results revealed high COI haplotype diversity of A. malaysiensis from Thailand. The geographical isolates of A. malaysiensis from Thailand and other countries formed a monophyletic clade distinct from the closely related A. cantonensis. In the present study, five new haplotypes were identified in addition to the four haplotypes reported in the literature. Phylogenetic analysis revealed that four of these five new haplotypes – one from Mae Hong Song (northern region), two from Tak (western region) and one from Phang Nga (southern region) – formed a distinct clade with those from Phatthalung (southern region) and Malaysia. The haplotype from Malaysia was identical to that of Phatthalung (haplotype AM1). In general, the COI sequences did not differentiate unambiguously the various geographical isolates of A. malaysiensis. This study has confirmed the presence of high COI genetic diversity in various geographical isolates of A. malaysiensis. The COI gene sequence will be suitable for studying genetic diversity, population structure and phylogeography.

Type
Short Communications
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akaike, H. (1973) Information theory and an extension of the maximum likelihood principle. pp. 267281 in Petrov, B.N. & Csaki, F. (Eds) Second International Symposium on Information Theory. Budapest, Akademia Kiado,Google Scholar
Bandelt, H.J., Forster, P. & Röhl, A. (1999) Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16, 3748.CrossRefGoogle ScholarPubMed
Bhaibulaya, M. (1979) Morphology and taxonomy of major Angiostrongylus species of Eastern Asia and Australia. pp. 413 in Cross, J.H. (Ed.) Studies on angiostrongyliasis in Eastern Asia and Australia. Taipei, Taiwan, US Naval Medical Research Unit No. 2.Google Scholar
Bhaibulaya, M. & Cross, J.H. (1971) Angiostrongylus malaysiensis (Nematode: Angiostrongylidae), a new species of rat lung-worm from Malaysia. Southeast Asian Journal of Tropical Medicine and Public Health 2, 527533.Google Scholar
Bhaibulaya, M. & Techasoponmani, V. (1972) Mixed infections of Angiostrongylus spp. in rats in Bangkok. Southeast Asian Journal of Tropical Medicine and Public Health 3, 451.Google ScholarPubMed
Blouin, M.S. (2002) Molecular prospecting for cryptic species of nematodes: mitochondrial DNA versus internal transcribed spacer. International Journal of Parasitology 32, 527531.CrossRefGoogle ScholarPubMed
Bowles, J., Hope, M., Tiu, W.U., Liu, X. & McManus, D.P. (1993) Nuclear and mitochondrial genetic markers highly conserved between Chinese and Philippine Schistosoma japonicum . Acta Tropica 55, 217229.CrossRefGoogle ScholarPubMed
Carney, W.P. & Stafford, E.E. (1979) Angiostrongyliasis in Indonesia: A review. pp. 1425 in Cross, J.H. (Ed.) Studies on angiostrongyliasis in Eastern Asia and Australia. Taipei, Taiwan, US Naval Medical Research Unit No. 2.Google Scholar
Cross, J.H. & Bhaibulaya, M. (1974) Validity of Angiostrongylus malaysiensis Bhaibulaya and Cross, 1971. Southeast Asian Journal of Tropical Medicine and Public Health 5, 374377.Google ScholarPubMed
Denver, D.R., Morris, K., Lynch, M., Larissa, L., Vassilieva, L.L. & Thomas, W.K. (2000) High direct estimate of the mutation rate in the mitochondrial genome of Caenorhabditis elegans . Science 289, 23422344.CrossRefGoogle ScholarPubMed
Eamsobhana, P. (2014) The rat lungworm – Angiostrongylus cantonensis: Parasitology, genetics and molecular phylogeny. 2nd edn. Bangkok, Aksorn Graphic and Design Publishing House.Google Scholar
Eamsobhana, P., Lim, P.E., Zhang, H., Gan, X.X. & Yong, H.S. (2010a) Molecular differentiation and phylogenetic relationships of three Angiostrongylus species and Angiostrongylus cantonensis geographical isolates based on a 66-kDa protein gene of A . cantonensis (Nematoda: Angiostrongylidae). Experimental Parasitology 126, 564569.Google ScholarPubMed
Eamsobhana, P., Lim, P.E., Solano, G., Zhang, H., Gan, X.X. & Yong, H.S. (2010b) Molecular differentiation of Angiostrongylus taxa (Nematoda: Angiostrongylidae) by cytochrome c oxidase subunit I (COI) gene sequences. Acta Tropica 116, 152156.CrossRefGoogle ScholarPubMed
Eamsobhana, P., Lim, P.E. & Yong, H.S. (2015) Phylogenetics and systematics of Angiostrongylus lungworms and related taxa (Nematoda: Metastrongyloidea) inferred from the nuclear small subunit (SSU) ribosomal DNA sequences. Journal of Helminthology 89, 317325.CrossRefGoogle ScholarPubMed
Eamsobhana, P., Yong, H.S., Prasartvit, A., Wanachiwanawin, D. & Boonyong, S. (2016) Geographical distribution and incidence of Angiostrongylus lungworms (Nematoda: Angiostrongylidae) and their rodent hosts in Thailand. Tropical Biomedicine 33, 3544.Google ScholarPubMed
Excoffier, L. & Lischer, H.E.L. (2010) Arlequin suite ver. 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10, 564567.CrossRefGoogle ScholarPubMed
Fontanilla, I.K.C. & Wade, C.M. (2008) The small subunit (SSU) ribosomal (r) RNA as a genetic marker for identifying infective 3rd juvenile stage Angiostrongylus cantonensis . Acta Tropica 105, 181186.CrossRefGoogle ScholarPubMed
Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Research 41, 9598.Google Scholar
Hu, M., Chilton, N.B. & Gasser, R.B. (2002) Long PCR-based amplification of the entire mitochondrial genome from single parasitic nematodes. Molecular and Cellular Probes 16, 261267.CrossRefGoogle ScholarPubMed
Huelsenback, J.P., Ronquist, F., Nielsen, R. & Bollback, J.P. (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294, 23102314.CrossRefGoogle Scholar
Jefferies, R., Shaw, S.E., Viney, M.E. & Morgan, E.R. (2009) Angiostrongylus vasorum from South America and Europe represent distinct lineages. Parasitology 136, 107115.CrossRefGoogle ScholarPubMed
Jefferies, R., Shaw, S.E., Willesen, J., Viney, M.E. & Morgan, E.R. (2010) Elucidating the spread of the emerging canid nematode Angiostrongylus vasorum between Palaearctic and Nearctic ecozones. Infection , Genetics and Evolution 10, 561568.CrossRefGoogle Scholar
Jobb, G., von Haeseler, A. & Strimmer, K. (2004) Treefinder: a powerful graphical analysis environment for molecular phylogenetics. BMC Evolutionary Biology 4, 1826.CrossRefGoogle ScholarPubMed
Katoh, K. & Standley, D.M. (2013) MAFFT Multiple Sequence Alignment Software Version 7: improvements in performance and usability. Molecular Biology Evolution 30, 772780.CrossRefGoogle ScholarPubMed
Lee, J.D., Chung, L.Y., Wang, L.C., Lin, R.J., Wang, J.J., Tu, H.P., Wu, Z.D. & Yen, C.M. (2014) Sequence analysis in partial genes of five isolates of Angiostrongylus cantonensis from Taiwan and biological comparison in infectivity and pathogenicity between two strains. Acta Tropica 133, 2634.CrossRefGoogle ScholarPubMed
Lim, B.L. & Ramachandran, C.P. (1979) Ecological studies on Angiostrongylus malaysiensis (Nematoda: Metastrongylidae) in Malaysia. pp. 2648 in Cross, J.H. (Ed.) Studies on angiostrongyliasis in Eastern Asia and Australia. Taipei, Taiwan, US Naval Medical Research Unit No. 2. Google Scholar
Lim, B.L., Ow Yang, C.K. & Lie, K.J. (1965) Natural infection of Angiostrongylus cantonensis in Malaysian rodents and intermediate hosts and preliminary observations on acquired resistance. American Journal of Tropical Medicine and Hygiene 14, 610617.Google Scholar
Monte, T.C.C., Simões, R.O., Oliveira, A.P.M., Novaes, C.F., Thiengo, S.C., Silva, A.J., Estrela, P.C. & Maldonado, A. Jr (2012) Phylogenetic relationship of the Brazilian isolates of the rat lungworm Angiostrongylus cantonensis (Nematoda: Metastrongylidae) employing mitochondrial COI gene sequence data. Parasites & Vectors 5, 248.CrossRefGoogle ScholarPubMed
Rambaut, A. (2012) FigTree (version 1.4.0). Available at http://tree.bio.ed.ac.uk/software/figtree/ (accessed 7 January 2017).Google Scholar
Rodpai, R., Intapan, P.M., Thanchomnang, T. & Sanpoolt, W. (2016) Angiostrongylus cantonensis and A. malaysiensis broadly overlap in Thailand, Lao PDR, Cambodia and Myanmar: a molecular survey of larvae in land snails. PLoS One 11, e0161128.CrossRefGoogle Scholar
Sawabe, K. & Makiya, K. (1995) Comparative infectivity and survival of first-stage larvae of Angiostrongylus cantonensis and Angiostrongylus malaysiensis . Journal of Parasitology 81, 228233.CrossRefGoogle ScholarPubMed
Schacher, J.F. & Cheong, C.H. (1960) Nematode parasites: three common house rat species in Malaya, with notes on Rictularia tani Hoeppli, 1929. Studies from the Institute for Medical Research (Malaya) 29, 209213.Google Scholar
Schwarz, G. (1978) Estimating the dimension of a model. Annals of Statistics 6, 461464.CrossRefGoogle Scholar
Spratt, D.M. (2015) Species of Angiostrongylus (Nematoda: Metastrongyloidea) in wildlife: a review. International Journal for Parasitology: Parasites and Wildlife 4, 178189.Google ScholarPubMed
Tanabe, A.S. (2007) Kakusan: a computer program to automate the selection of a nucleotide substitution model and the configuration of a mixed model on multilocus data. Molecular Ecology Notes 7, 962964.CrossRefGoogle Scholar
Tokiwa, T., Harunari, T., Tanikawa, T., Komatsu, N., Koizumi, N., Tung, K.C., Suzuki, J., Kadosaka, T., Takada, N., Kumagai, T., Akao, N. & Ohta, N. (2012) Phylogenetic relationships of rat lungworm, Angiostrongylus cantonensis, isolated from different geographical regions revealed widespread multiple lineages. Parasitology International 61, 431436.CrossRefGoogle ScholarPubMed
Vitta, A., Srisongcram, N., Thiproaj, J., Wongma, A., Polsut, W., Fukruksa, C., Yimthin, T., Mangkit, B., Thanwisai, A., & Dekumyoy, P. (2016) Phylogeny of Angiostrongylus cantonensis in Thailand based on cytochrome c oxidase subunit I gene sequence. Southeast Asian Journal of Tropical Medicine and Public Health 47, 377386.Google Scholar
Yong, H.S., Eamsobhana, P., Song, S.L., Prasartvit, A. & Lim, P.E. (2015) Molecular phylogeography of Angiostrongylus cantonensis (Nematoda: Angiostrongylidae) and genetic relationships with congeners using cytochrome b gene marker. Acta Tropica 148, 6671.CrossRefGoogle ScholarPubMed
Yong, H.S., Song, S.L., Eamsobhana, P. & Lim, P.E. (2016) Complete mitochondrial genome of Angiostrongylus malaysiensis lungworm and molecular phylogeny of metastrongyloid nematodes. Acta Tropica 161, 3340.CrossRefGoogle ScholarPubMed