Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-16T21:36:20.513Z Has data issue: false hasContentIssue false

Cotugnia digonopora: carbohydrate metabolism and effect of anthelmintics on immature worms*

Published online by Cambridge University Press:  18 November 2009

N. A. Pampori
Affiliation:
Division of Biochemistry, Central Drug Research Institute, Lucknow-226001, India
Govind Singh
Affiliation:
Division of Biochemistry, Central Drug Research Institute, Lucknow-226001, India
V. M. L. Srivastava
Affiliation:
Division of Biochemistry, Central Drug Research Institute, Lucknow-226001, India

Abstract

Cotugnia digonopora consumes, in 24 hours, glucose equivalent to 38% of its body-weight and converts it into metabolites. The Krebs' cycle is insignificant in the breakdown of glucose because very little CO2 is formed. Ether-cxtractablc acids account for most of the consumed sugar, confirming that metabolism is predominantly anaerobic. Glucose is assimilated as glycogen rather than as nucleic acids, lipids and proteins.

Niclosamidc, praziquantel and mebendazole strongly inhibit uptake of glucose by the parasite. A considerable increase in the production of lactic acid over that of ether-soluble and volatile acids under the influence of these drugs, suggests a rhange in the catabolism of sugar towards homolactate fermentation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrews, P. & Thomas, H. (1979) The eflcct of praziquantel on Hymenolepis diminuta in vitro. Tropenmedizin und Parasitologie, 30, 391400.Google ScholarPubMed
Barker, S.B. & Summerson, W.H. (1940) The colorimctric determination of lactic acid in biological material. Journal of Biological Chemistry, 138, 535554.CrossRefGoogle Scholar
Bergmeyer, H.U. & Bernt, E. (1963) D-Glucose: determination with glucose oxidase and peroxidase. In: Methods in Enzymatic Analysis, Academic Press, p. 123.Google Scholar
Broome, A.W.J. (1962) In: Drugs, parasites and host (Goodwin, L.G. & Nimmo-Smith, R.H., Editors) Churchill, London, p. 43.Google Scholar
Bueding, E. (1949) Studies on the metabolism of the filarial worm, Litomosoides carinii. Journal of Experimental Medicine, 89, 107130.CrossRefGoogle Scholar
De Luca, H.F. & Cohen, P.P. (1964) Suspending media for animal tissues. In: Manometric Techniques (Umbrcit, W.W., Burris, R.H. & Stauffer, J.F., Editors), 4th edition, Burgess,Minneapolis, pp. 131133.Google Scholar
De Zoeten, L.W. & Tipker, J. (1969) Intermediary metabolism of the liver fluke Fasciola hepatica. II. Hydrogen transport and phosphorylation. Hoppe-Seyler's Zeitscrift für Physiologische Chemie, 350, 691695.CrossRefGoogle ScholarPubMed
Fairbairn, D., Wertheim, G., Harpur, R.P. & Schiller, E.L. (1961) Biochemistry of normal and irradiated strains of Hymenolepis diminuta. Experimental Parasitology, 11, 248263.CrossRefGoogle ScholarPubMed
Friedmann, T.E. & Haugen, G.E. (1943) Pyruvic acid. II. The determination of ketoacids in blood and urine. Journal of Biological Chemistry, 147, 415441.Google Scholar
Jaffe, J.J. & Doremus, H.M. (1970) Metabolic patterns of Dirofilaria immitis microfilariae in vitro. Journal of Parasitology, 56, 254260.CrossRefGoogle ScholarPubMed
Kaushik, R.K., Katiyar, J.C. & Sen, A.B. (1974) Studies on the mode of action of anthelmintics with Ascaridia galli as the test parasite. Indian Journal of Medical Research, 62, 13671375.Google ScholarPubMed
Kohler, P. & Bachmann, R. (1978) The effect of antiparasitic drugs levamisole, thiabendazole, praziquantel and chloroquine on mitochondrial electron transport in muscle tissue of Ascaris suum. Molecular Pharmacology, 14, 155162.Google ScholarPubMed
Natarajan, P.N, Zaman, V. & Yeoh, T.S. (1973) In vitro activity of diethylcarbamazine on the infective larvae, microfilariae and adult worms of Breinlia sergenti. International Journal for Parasitology, 3, 803807.CrossRefGoogle ScholarPubMed
Rahman, M.S. & Bryant, C. (1977) Studies of regulatory metabolism in Moniezia expansa: effects of cambendazole and mebendazole. International Journal for Parasitology, 7, 403409.CrossRefGoogle Scholar
Reid, W.M. (1945) Comparison between in vitro and in vivo glycogen utilization in the fowl nematode Ascaridia galli. Journal of Parasitology, 31, 406410.CrossRefGoogle ScholarPubMed
Roy, T.K. & Srivastava, V.M.L. (1981) Cotugnia digonopora: transport of leucine. Experimental Parasitology, 51, 2127.CrossRefGoogle ScholarPubMed
Saz, H.J. (1971) Facultative anacrobiosis in the invertebrates: pathways and control systems. American Zoology, 11, 125135.CrossRefGoogle Scholar
Saz, H.J. (1981) Energy generation in parasitic helminths. In: Biochemistry of parasites (Slutzky, G.M., Editor). Pergamon Press, New York, pp. 177189.CrossRefGoogle Scholar
Schmidt, G. & Thannhausser, S.J. (1945) A method for the determination of deoxyribonucleic acid, ribonucleic acid, and phosphoproteins in animal tissues. Journal of Biological Chemistry, 161, 8389.CrossRefGoogle ScholarPubMed
Schneider, W.C. (1945) Phosphorous compounds in animal tissues. I. Extraction and estimation of deoxypentose nucleic acid and of pentose nucleic acid. Journal of Biological Chemistry, 161, 293303.CrossRefGoogle Scholar
Singh, G., Pampori, N.A. & Srivastava, V.M.L. (1983) Metabolism of aminoacids in Ascaridia galli: decarboxylation reactions. International Journal for Parasitology, 13, 305307.CrossRefGoogle ScholarPubMed
Srivastava, V.M.L., Ghatak, S. & Krishnamurti, C.R. (1971) Enzymes of carbohydrate metabolism of helminths. Labdev Journal of Science and Technology, India, 9B, 5964.Google Scholar
Strufe, R. & Gonnert, R. (1967) Uber die Beein flussung des Bandwurun stoffwechsels durch Arznetmittel. Zeitscrift für Tropenmedizin und Parasitologie, 18, 193202.Google Scholar
Van Den Bossche, H. & Janssen, P.A.J. (1969) The biochemical mechanism of action of the antinematodal drug tetramisole. Biochemical Pharmacology, 18, 3542.CrossRefGoogle ScholarPubMed
Van Den Bossche, H., Vehoeren, H., Vanparijs, O., Lauwers, H. & Thienpont, D. (1979) Closantel, a new antiparasitic hydrogen ionophore. Archives internationales Physiologie el de Biochimie, 87, 851853.Google ScholarPubMed
Van Den Bossche, H. (1980) Peculiar targets in anthelmintic chemotherapy. Biochemical Pharmacology, 29, 19811990.CrossRefGoogle ScholarPubMed
Von Brand, T. (1973) Biochemistry of Parasites. Academic Press, New York.Google Scholar
Wang, E.J. & Saz, H.J. (1974) Comparative biochemical studies of Litomosoides carinii, Dipetalonema viteae and Brugia pahangi adults. Journal of Parasitology, 60, 316321.CrossRefGoogle ScholarPubMed