Skip to main content Accessibility help
×
Home

Characterization of Trichuris trichiura from humans and T. suis from pigs in China using internal transcribed spacers of nuclear ribosomal DNA

  • G.H. Liu (a1) (a2), W. Zhou (a1) (a3), A.J. Nisbet (a4), M.J. Xu (a1), D.H. Zhou (a1), G.H. Zhao (a5), S.K. Wang (a6), H.Q. Song (a1), R.Q. Lin (a7) and X.Q. Zhu (a1) (a2) (a8)...

Abstract

Trichuris trichiura and Trichuris suis parasitize (at the adult stage) the caeca of humans and pigs, respectively, causing trichuriasis. Despite these parasites being of human and animal health significance, causing considerable socio-economic losses globally, little is known of the molecular characteristics of T. trichiura and T. suis from China. In the present study, the entire first and second internal transcribed spacer (ITS-1 and ITS-2) regions of nuclear ribosomal DNA (rDNA) of T. trichiura and T. suis from China were amplified by polymerase chain reaction (PCR), the representative amplicons were cloned and sequenced, and sequence variation in the ITS rDNA was examined. The ITS rDNA sequences for the T. trichiura and T. suis samples were 1222–1267 bp and 1339–1353 bp in length, respectively. Sequence analysis revealed that the ITS-1, 5.8S and ITS-2 rDNAs of both whipworms were 600–627 bp and 655–661 bp, 154 bp, and 468–486 bp and 530–538 bp in size, respectively. Sequence variation in ITS rDNA within and among T. trichiura and T. suis was examined. Excluding nucleotide variations in the simple sequence repeats, the intra-species sequence variation in the ITS-1 was 0.2–1.7% within T. trichiura, and 0–1.5% within T. suis. For ITS-2 rDNA, the intra-species sequence variation was 0–1.3% within T. trichiura and 0.2–1.7% within T. suis. The inter-species sequence differences between the two whipworms were 60.7–65.3% for ITS-1 and 59.3–61.5% for ITS-2. These results demonstrated that the ITS rDNA sequences provide additional genetic markers for the characterization and differentiation of the two whipworms. These data should be useful for studying the epidemiology and population genetics of T. trichiura and T. suis, as well as for the diagnosis of trichuriasis in humans and pigs.

Copyright

Corresponding author

*Fax: +86 (931) 8340977 E-mail: xingquanzhu1@hotmail.com

References

Hide All
Barus, V., Kotrla, B. & Tenora, F. (1977) A scanning electron microscopic study of spicular sheath of some trichurids (Nematoda). Folia Parasitologica 24, 107110.
Bethony, J., Brooker, S., Albonico, M., Geiger, S.M., Loukas, A., Diemert, D. & Hotez, P.J. (2006) Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet 367, 15211532.
Bethony, J.M., Cole, R.N., Guo, X., Kamhawi, S., Lightowlers, M.W., Loukas, A., Petri, W., Reed, S., Valenzuela, J.G. & Hotez, P.J. (2011) Vaccines to combat the neglected tropical diseases. Immunological Reviews 239, 237270.
Burland, T.G. (2000) DNASTAR's Lasergene sequence analysis software. Methods in Molecular Biology 132, 7191.
Ceballos-Mendiola, G., Valero, A., Polo-Vico, R., Tejada, M., Abattouy, N., Karl, H., De las Heras, C. & Martín-Sánchez, J. (2010) Genetic variability of Anisakis simplex s.s. parasitizing European hake (Merluccius merluccius) in the Little Sole Bank area in the Northeast Atlantic. Parasitology Research 107, 13991404.
Chen, Y.D., Tang, L.H. & Xu, L.Q. (2008) Current status of soil-transmitted nematode infection in China. Biomedical and Environmental Sciences 21, 173179.
Chilton, N.B., Gasser, R.B. & Beveridge, I. (1995) Differences in a ribosomal DNA sequence of morphologically indistinguishable species within the Hypodontus macropi complex (Nematoda: Strongyloidea). International Journal for Parasitology 25, 647651.
Cutillas, C., Callejon, R., Rojas, M.D., Tewes, B. & Ubeda, J.M. (2009) Trichuris suis and Trichuris trichiura are different nematode species. Acta Tropica 111, 299307.
Gasser, R.B., Chilton, N.B., Hoste, H. & Beveridge, I. (1993) Rapid sequencing of rDNA from single worms and eggs of parasitic helminths. Nucleic Acids Research 21, 25252526.
Hotez, P.J., Savioli, L. & Fenwick, A. (2012) Neglected tropical diseases of the Middle East and North Africa: review of their prevalence, distribution, and opportunities for control. PLoS Neglected Tropical Diseases 6, e1475.
Huang, W.Y., He, B., Wang, C.R. & Zhu, X.Q. (2004) Characterisation of Fasciola species from mainland China by ITS-2 ribosomal DNA sequence. Veterinary Parasitology 120, 7583.
Jenkins, T. (1970) A morphological and histochemical study of Trichuris suis (Schrank, 1788) with special reference to the host–parasite relationship. Parasitology 61, 357374.
Lai, M., Zhou, R.Q., Huang, H.C. & Hu, S.J. (2011) Prevalence and risk factors associated with intestinal parasites in pigs in Chongqing, China. Research in Veterinary Science 91, 121124.
Lin, Q., Li, H.M., Gao, M., Wang, X.Y., Ren, W.X., Cong, M.M., Tan, X.C., Chen, C.X., Yu, S.K. & Zhao, G.H. (2012) Characterization of Baylisascaris schroederi from Qinling subspecies of giant panda in China by the first internal transcribed spacer (ITS-1) of nuclear ribosomal DNA. Parasitology Research 110, 12971303.
Liu, G.H., Gasser, R.B., Su, A., Nejsum, P., Peng, L., Lin, R.Q., Li, M.W., Xu, M.J. & Zhu, X.Q. (2012) Clear genetic distinctiveness between human- and pig-derived Trichuris based on analyses of mitochondrial datasets. PLoS Neglected Tropical Diseases 6, e1539.
Mahmoud, L.H. (2002) Scanning electron microscopy of Trichuris trichiura. Journal of the Egyptian Society of Parasitology 32, 469474.
Mbuh, J.V., Ntonifor, N.H. & Ojong, J. (2012) The epidemiology of soil-transmitted helminth and protozoan infections in south-west Cameroon. Journal of Helminthology 86, 3037.
Mejía-Madrid, H.H. & Aguirre-Macedo, M.L. (2011) Redescription and genetic characterization of Cucullanus dodsworthi (Nematoda: Cucullanidae) from the checkered puffer Sphoeroides testudineus (Pisces: Tetraodontiformes). Journal of Parasitology 97, 695706.
Nejsum, P., Betson, M., Bendall, R.P., Thamsborg, S.M. & Stothard, J.R. (2012) Assessing the zoonotic potential of Ascaris suum and Trichuris suis: looking to the future from an analysis of the past. Journal of Helminthology 86, 148155.
Nissen, S., Al-Jubury, A., Hansen, T.V., Olsen, A., Christensen, H., Thamsborg, S.M. & Nejsum, P. (2012) Genetic analysis of Trichuris suis and Trichuris trichiura recovered from humans and pigs in a sympatric setting in Uganda. Veterinary Parasitology 188, 6877.
Ooi, H.K., Tenora, F., Itoh, K. & Kamiya, M. (1993) Comparative study of Trichuris trichiura from non-human primates and from man, and their difference with T. suis. Journal of Veterinary Medical Science 55, 363366.
Stephenson, L.S., Holland, C.V. & Cooper, E.S. (2000) The public health significance of Trichuris trichiura. Parasitology 121, 7395.
Stewart, T.B. & Hale, O.M. (1988) Losses to internal parasites in swine production. Journal of Animal Science 66, 15481554.
Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. & Higgins, D.G. (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 24, 48764882.
Wickramasinghe, S., Yatawara, L., Rajapakse, R.P. & Agatsuma, T. (2009) Toxocara canis and Toxocara vitulorum: molecular characterization, discrimination, and phylogenetic analysis based on mitochondrial (ATP synthase subunit 6 and 12S) and nuclear ribosomal (ITS-2 and 28S) genes. Parasitology Research 104, 14251430.
Zaman, V. (1984) Scanning electron microscopy of Trichuris trichiura (Nematoda). Acta Tropica 41, 287292.

Related content

Powered by UNSILO

Characterization of Trichuris trichiura from humans and T. suis from pigs in China using internal transcribed spacers of nuclear ribosomal DNA

  • G.H. Liu (a1) (a2), W. Zhou (a1) (a3), A.J. Nisbet (a4), M.J. Xu (a1), D.H. Zhou (a1), G.H. Zhao (a5), S.K. Wang (a6), H.Q. Song (a1), R.Q. Lin (a7) and X.Q. Zhu (a1) (a2) (a8)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.