Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T02:19:49.781Z Has data issue: false hasContentIssue false

An amended description of two Gyrodactylus species (Platyhelminthes: Monogenea) parasitizing Antarctic Notothenioid fish

Published online by Cambridge University Press:  06 December 2018

I. Heglasová
Affiliation:
Department of Zoology, Faculty of Science, Comenius University in Bratislava, Bratislava, Slovak Republic Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovak Republic
V. Nezhybová
Affiliation:
Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
I. Přikrylová*
Affiliation:
Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic Water Research Group, Unit for Environmental Sciences and Development, North West University, Potchefstroom, South Africa Department of Biodiversity, School of Molecular and Life Sciences, University of Limpopo, Sovenga, South Africa
*
Author for correspondence: I. Přikrylová, E-mail: ivaprik@sci.muni.cz

Abstract

Species identification based on the morphometry of opisthaptoral hard parts, in combination with internal transcribed spacer ribosomal DNA (ITS rDNA) region sequences, confirmed the presence of four viviparous Gyrodactylus von Nordman, 1832 (Plathyhelminthes, Monogenea) species on Nototheniid fish from the Prince Gustav Channel (Weddell Sea, Antarctica). Gyrodactylus antarcticus Gusev, 1967 was found mostly on Trematomus newnesi Boulenger (93 specimens) but also on T. bernacchii Boulenger (one specimen), the latter representing a new host record for this species. Gyrodactylus byrdi Hargis & Dillon, 1968 and G. coriicepsi Rokicka, Lumme & Ziętara, 2009 were recorded on their type hosts, T. newnesi and Notothenia coriiceps Richardson, respectively. Gyrodactylus wilkesi Hargis & Dillon, 1968 was found mostly on the fins of T. bernacchii (29 specimens), but also on T. hansoni Boulenger (one specimen) and T. newnesi (three specimens). The finding of G. wilkesi on T. newnesi represents a new host record. The low number of Gyrodactylus specimens may indicate an accidental infection. The occurence of all four Gyrodactylus species in the Prince Gustav Channel represents a new locality record. According to phylogentic methods, the newly redescribed monogeneans belong to the Antarctic lineage, forming a sister group to North American and European marine Gyrodactylus species, and consist of two species groups, one comprising G. coriicepsi and G. nudifronsi Rokicka, Lumme & Ziętara, 2009, and the other G. anarcticus and G. wilkesi.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bakke, TA, Harris, PD and Cable, J (2002) Host specificity dynamics: observation on gyrodactylid monogeneans. International Journal of Parasitology 32, 281308.Google Scholar
Bakke, TA, Cable, J and Harris, PD (2007) The biology of gyrodactylid monogeneans: the ‘‘Russian-doll killers’’. Advances in Parasitology 64, 161376.Google Scholar
Boeger, WA, Kritsky, DC and Pie, MR (2003) Context of diversification of the viviparous Gyrodactylidae (Platyhelminthes, Monogenoidea). Zoologica Scripta 32, 437448.Google Scholar
Cable, J and Harris, PD (2002) Gyrodactylid developmental biology: historical review, current status and future trends. International Journal of Parasitology 32, 255280.Google Scholar
Capella-Gutiérrez, S, Silla-Martínez, JM and Gabaldón, T (2009) TrimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 19721973.Google Scholar
Christinson, KW, Shinn, AP and Van As, JG (2005) Gyrodactylus thlapi n. sp. (Monogenea) from Pseudocrenilabrus philander philender (Weber) (Cichlidae) in the Okawango Delta, Botswana. Systematic Parasitology 60, 165173.Google Scholar
Cunningham, CO (1997) Species variation within the internal transcribed spacer (ITS) region of Gyrodactylus (Monogenea; Gyrodactylidae) ribosomal RNA genes. Journal of Parasitology 83, 215219.Google Scholar
Cunningham, CO, McGillivray, DM and MacKenzie, K (1995) Phylogenetic analysis of Gyrodactylus salaris Malmberg, 1957 based on small subunit (18S) ribosomal RNA gene. Molecular and Biochemical Parasitology 71, 139142.Google Scholar
Eastman, JT (2005) The nature of the diversity of Antarctic fishes. Polar Biology 28, 93107.Google Scholar
Eastman, JT and Clarke, A (1998) A comparison of adaptive radiations of Antarctic fish with those of non-Antarctic fish. In di Prisco, G, Pisano, E and Clarke, A (eds), Fishes of Antarctica: A Biological Overview. Milan, Berlin, Heidelberg: Springer, pp. 326.Google Scholar
Fischer, W and Hureau, JC (1985) FAO Species Identification Sheets for Fishery Purposes. Southern Ocean: Fishing Areas 48, 58 and 88 (CCAMLR Convention Area). Rome: FAO.Google Scholar
García-Vásquez, A et al. (2011) Description of three new species of Gyrodactylus von Nordmann, 1832 (Monogenea) parasitising Oreochromis niloticus niloticus (L.) and O. mossambicus (Peters) (Cichlidae). Acta Parasitologica 52, 2033.Google Scholar
Gilmore, SR et al. (2012) Molecular phylogeny of Gyrodactylus (Monogenea) parasitizing fishes in fresh water, estuarine, and marine habitats in Canada. Canadian Jounal of Zoology 90, 776786.Google Scholar
Glez-Peña, D et al. (2010) ALTER: program-oriented conversion of DNA and protein alignments. Nucleic Acids Research 38, 1418.Google Scholar
Gon, O and Heemstra, PC (1990) Fishes of the Southern Ocean. Grahamstown: J.L.B. Smith Institute of Ichthyology.Google Scholar
Guindon, S and Gascuel, O (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Systematic Biology 52, 696704.Google Scholar
Gusev, AV (1967) Two new species of genus Gyrodactylus Nordmann (Monogenoidea) near off the coast of the Antarctic continent. Zoologicheskiy Institut Akademii Nauk SSSR. Explorations of the fauna of the seas IV (XII). Biological Reports of the Soviet Antarctic Expedition (1955–1958) 3, 187189.Google Scholar
Hargis, JWJ and Dillon, WA (1968) Helminth parasites of Antarctic vertebrates. Part II. Monogenetic trematodes from Antarctic fishes: the superfamily Gyrodactyloides Johnston and Tiegs, 1922. Antarctic Research Series, Volume 11, Biology of the Antarctic Seas III. Virginia Institute of Marine Science, Gloucester Point, Washington, DC, pp. 91–99.Google Scholar
Harris, PD et al. (2004) Nominal species of the genus Gyrodactylus von Nordmann 1832 (Monogenea: Gyrodactylidae), with a list of principal host species. Systematic Parasitology 59, 127.Google Scholar
Huelsenbeck, JP and Ronquist, F (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754755.Google Scholar
Hurvich, CM and Tsai, CL (1989) Regression and time series model selection in small samples. Biometrika 76, 297307.Google Scholar
Klapper, R et al. (2017) Biodiversity and host specificity of Monogenea in Antarctic fish species. In Klimpel, S, Kuhn, T and Melhorn, H (eds), Biodiversity and Evolution of Parasitic Life in the Southern Ocean. Cham: Springer Nature, pp. 3348.Google Scholar
Kritsky, DC and Boeger, WA (2003) Phylogeny of the Gyrodactylidae and the phylogenetic status of Gyrodactylus Nordmann, 1832 (Platyhelminthes: Monogenoidea). In Combes, C and Jourdane, J (eds), Taxonomie, Ecologie et Evolution des Métazoaires Parasites. [Taxonomy, Ecology and Evolution of Metazoan Parasites] (Livre hommageà Louis Euzet), vol. II. Perpignan: Presses Universitaires de Perpignan, pp. 3758.Google Scholar
Malmberg, G (1970) The excretory systems and the marginal hooks as a basis for the systematics of Gyrodactylus (Trematoda, Monogenea). Arkiv för Zoologi 23, 1235.Google Scholar
Malmberg, G (1998) On the evolution within the family Gyrodactylidae (Monogenea). International Journal of Parasitology 28, 16251635.Google Scholar
Matějusová, I et al. (2001) Molecular markers for gyrodactylids (Gyrodactylidae: Monogenea) from five fish families (Teleostei). International Journal of Parasitology 31, 738745.Google Scholar
Matějusová, I et al. (2003) Molecular phylogenetic analysis of the genus Gyrodactylus (Platihelminthes: Monogenea) inferred from rDNA ITS region: subgenera versus species groups. Parasitology 127, 603611.Google Scholar
Nelson, JS (2006) Fishes of the World. 4th Edition. Hoboken, NJ: John Wiley & Sons, Inc.Google Scholar
Oğuz, MC et al. (2015) Metazoan parasites of Antarctic fishes. Turkish Journal of Parasitology 39, 174178.Google Scholar
Přikrylová, I, Blažek, R and Gelnar, M (2012a) Gyrodactylus malalai sp. nov. (Monogenea, Gyrodactylidae) from Nile tilapia, Oreochromis niloticus (L.) and redbelly tilapia, Tilapia zillii (Gervais) (Teleostei, Cichlidae) in the Lake Turkana. Kenya. Acta Parasitologica 57, 122130.Google Scholar
Přikrylová, I, Blažek, R and Vanhove, MPM (2012b) An overview of the Gyrodactylus (Monogenea: Gyrodactylidae) species parasitizing African catfishes, and their morphological and molecular diversity. Parasitology Research 110, 11851200.Google Scholar
Přikrylová, I et al. (2013) Tiny worms from a mighty continent: high diversity and new phylogenetic lineages of African monogeneans. Molecular Phylogenetics and Evolution 67, 4352.Google Scholar
Rodriguez, F et al. (1990) The general stochastic model of nucleotide substitution. Journal of Theoretical Biology 142, 485501.Google Scholar
Rokicka, M, Lumme, J and Ziętara, MS (2007) Identification of Gyrodactylus ectoparasites in Polish salmonid farms by PCR-RFLP of the nuclear ITS segment of ribosomal DNA (Monogenea: Gyrodactylidae). Acta Parasitologica 52, 185195.Google Scholar
Rokicka, M, Lumme, J and Ziętara, MS (2009) Two new Antarctic Gyrodactylus species (Monogenoidea): description and phylogenetic characterization. Journal of Parasitology 95, 11121119.Google Scholar
Ronquist, F and Huelsenbeck, JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 15721574.Google Scholar
Schwarz, G (1978) Estimating the dimension of a model. Annals of Statistics 6, 461464.Google Scholar
Shinn, AP et al. (2011) MonoDb. A webhost for Monogenea. Available at http://www.monodb.org (accessed 2 September 2015).Google Scholar
Tamura, K et al. (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution 30, 27252729.Google Scholar
Tavaré, S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. In Miura, RM (ed.), Some Mathematical Questions in Biology: DNA Sequence Analysis. Providence, RI: American Mathematical Society.Google Scholar
Thompson, JD, Higgins, DG and Gibson, TJ (1994) Clustal-W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.Google Scholar
Vanhove, MPM et al. (2011) First description of monogenean parasites in Lake Tanganyika: the cichlid Simochromis diagramma (Teleostei, Cichlidae) harbours a high diversity of Gyrodactylus species (Platyhelminthes, Monogenea). Parasitology 138, 364380.Google Scholar
Zahradníčková, P et al. (2016) Species of Gyrodactylus von Nordmann, 1832 (Platyhelminthes: Monogenea) from cichlids from Zambezi and Limpopo river basins in Zimbabwe and South Africa: evidence for unexplored species richness. Systematic Parasitology 93, 679700.Google Scholar
Zdzitowiecki, K and Laskowski, Z (2004) Helminths of an Antarctic fish, Notothenia coriiceps, from the Vernadski Station (Western Antarctica) in comparison with Admiralty Bay (South Shetland Islands). Helminthologia 41, 201207.Google Scholar
Ziętara, MS and Lumme, J (2003) The crossroads of molecular, typological and biological species concepts: two new species of Gyrodactylus Nordmann, 1832 (Monogenea, Gyrodactylidae). Systematic Parasitology 55, 3952.Google Scholar