Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-18T13:10:42.176Z Has data issue: false hasContentIssue false

Specific status and pathogenicity of syngamid nematodes in bird species (Ciconiformes, Falconiformes, Gruiformes) from Germany

Published online by Cambridge University Press:  01 March 2007

O. Krone*
Affiliation:
Leibniz-Institute for Zoo and Wildlife Research, PO Box 601103, D-10252 Berlin, Germany
D. Friedrich
Affiliation:
Leibniz-Institute for Zoo and Wildlife Research, PO Box 601103, D-10252 Berlin, Germany
M. Honisch
Affiliation:
Leibniz-Institute for Zoo and Wildlife Research, PO Box 601103, D-10252 Berlin, Germany
*
*Fax: +49 30 5126 104 E-mail: krone@izw-berlin.de

Abstract

A total of 549 birds from four orders were examined for nematodes in their respiratory system from 1995 to 2000. Twelve individuals of Falconiformes (n = 503), one of Gruiformes (n = 22) and one of Ciconiformes (n = 1), but no bird of the order Strigiformes (n = 23) were infected with syngamids. The syngamid species included Hovorkonema variegatum, Syngamus trachea and Cyathostoma trifurcatum from the trachea, bronchi and air sacs, with H. variegatum being the most prevalent. Cyathostoma trifurcatum from a black stork Ciconia nigra is a new record for Germany. The marsh harrier Circus aeruginosus and the white-tailed sea eagle Haliaeetus albicilla are new hosts for H. variegatum. Morphological characters such as the dorsal rays of the bursa copulatrix, length of the spicules and the mouth capsule are used to differentiate species of the family Syngamidae. Egg size is different between S. trachea and H. variegatum. In addition to morphological characters, the nucleotide sequence of the SSU ribosomal gene was determined for H. variegatum. Pairwise comparisons with the SSU sequence of S. trachea (AF036606) revealed sequence difference of 2.6%. The nucleotide sequence of the second internal transcribed spacer of ribosomal DNA for different populations of H. variegatum was also determined. Pairwise comparisons revealed two separate strains with a sequence difference of 14.0% to 14.5% suggesting the existence of a cryptic species. Pathological findings associated with H. variegatum were found in 7 of 12 cases and consisted of thickened air sac walls and lesions or granuloma at the site of attachment of the worm, which occasionally involved the underlaying tissues. Lymphoplasmocytic air sacculitis was the most prominent histological lesion found.

Type
Research Papers
Copyright
Copyright © 2007 Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ali, M.M. (1970) A review and revision of the subfamily Cyathostomatinae Nicoll, 1927 (Nematoda, Syngamidae). Acta Parasitologica Polonica 17, 237246.Google Scholar
Anderson, R.C. (2000) Nematode parasites of vertebrates: their development and transmission. 2nd edn. 672 pp. Wallingford, Oxon, CAB International.Google Scholar
Baruš, V. & Tenora, F. (1972) Notes on the systematics and taxonomy of the nematodes belonging to the family Syngamidae Leiper, 1912. Acta Universitatis Agriculturae Brno 10, 275–286.Google Scholar
Bernard, J. & Biesemans, W. (1978) À propos de la présence abondante de Syngamus trachea Montagu 1811 chez des oiseaux sauvages maintenus an captivité. Parasitica 34, 49–52 (in French).Google Scholar
Blaxter, M.L. (2001) Molecular analysis of nematode evolution. pp. 1–24 in Kennedy, M. & Harnett, W. (Eds) Parasitic nematodes: molecular biology, biochemistry and immunology., Wallingford, Oxon, CAB International.Google Scholar
Blouin, M.S. (2002) Molecular prospecting for cryptic species of nematodes: mitochondrial DNA versus internal transcript spacer. International Journal for Parasitology 32, 527531.CrossRefGoogle Scholar
Carpenter, J.W. & Derrickson, S.R. (1987) Infectious and parasitic diseases of cranes: principles of treatment and prevention. pp. 539553 in Archibald, G.W. & Pasquier, R.F. (Eds) Proceedings of the 1993 International Crane Workshop. Baraboo, Wisconsin, International Crane Foundation.Google Scholar
Chilton, N.B. & Gasser, R.B. (1999) Sequence differences in the internal transcribed spacers of DNA among four species of hookworm (Ancylostomatoidea: Ancylostoma). International Journal for Parasitoloy 29, 19711977.Google Scholar
Chilton, N.B., Gasser, R.B. & Beveridge, I. (1995) Differences in a ribosomal DNA sequence of morphologically indistinguishable species within the Hypodontus macropi complex (Nematoda: Strongyloidea). International Journal for Parasitology 25, 647–651.Google Scholar
Doster, G.L. & Goater, C.P. (1997) Collection and quantification of avian helminths and protozoa. pp. 396–418 in Clayton, D.H. & Moore, J. (Eds) Host–parasite evolution. New York, Oxford University Press.CrossRefGoogle Scholar
Forrester, D.J., Bush, A.O., Williams, L.E. & Weiner, D.J. (1974) Parasites of greater sandhill cranes (Grus canadensis tabida) on their wintering grounds in Florida. Proceedings of the Helminthological Society of Washington 41, 55–59.Google Scholar
Frank, C. (1977) Zur Helminthenfauna verschiedener Großvögel aus Österreich. Zeitschrift für Angewandte Zoologie 64, 409439(in German).Google Scholar
Furmaga, S. (1957) Helmintofauna ptaków drapieżnych (Accipitres et Striges) okolic Lublina. Acta Parasitolgica Polonica 5, 215–297 (in Polish).Google Scholar
Gasser, R.B. (2001) Identification of parasitic nematodes and study of genetic variability using PCR approaches. pp. 53–82 in Kennedy, M. & Harnett, W. (Eds) Parasitic nematodes: molecular biology, biochemistry and immunology. Wallingford, Oxon, CAB International.CrossRefGoogle Scholar
Hartwich, G. (1994) Die Tierwelt Deutschlands. 68. Teil. Schlauchwürmer, Nemathelminthes, Rund- oder Fadenwürmer, Nematoda. Parasitische Rundwürmer von Wirbeltieren. Strongylida: Strongyloidea und Ancylostomatoidea. 157 pp. Jena, Stuttgart, Gustav Fischer Verlag (in German).Google Scholar
Hung, G.C., Chilton, N.B., Beveridge, I., McDonnell, A., Lichtenfels, J.R. & Gasser, R.B. (1997) Molecular delineation of Cylicocyclus nassatus and C. ashworthi (Nematoda: Strongylidae). International Journal for Parasitology 27, 601605.CrossRefGoogle Scholar
Hunter, D.B., McKeever, K. & Bartlett, C. (1993) Cyathostoma infections in screech owls, saw-wet owls, and burrowing owls in southern Ontario. pp. 54–56 in Redig, P.T., Cooper, J.E., Remple, J.D. & Hunter, D.B. (Eds) Raptor biomedicine. Minneapolis, University of Minnesota Press.Google Scholar
Krone, O. & Cooper, J.E. (2002) Parasitic diseases. pp. 105–120 in Cooper, J.E. (Ed.) Birds of prey. Health and diseases. Oxford, Blackwell Science Ltd.CrossRefGoogle Scholar
Kumar, S., Tamera, K. & Nei, M. (2004) MEGA 3: integrated software molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics 5, 150163.CrossRefGoogle Scholar
Kutzer, E., Frey, H. & Kotremba, J. (1980) Zur Parasitenfauna österreichischer Greifvögel. Angewandte Parasitolgie 21, 183205(in German).Google Scholar
Lavoie, M., Mikaelian, I., Sterner, M., Villeneuve, A., Fitzgerald, G., McLaughlin, J.D., Lair, S. & Martineau, D. (1999) Respiratory nematodiasis in raptors in Quebec. Journal of Wildlife Diseases 35, 375380.CrossRefGoogle ScholarPubMed
Lengy, J. (1969) Notes on the classification of Syngamidae (Nematoda) with new data on some of the species. Israel Journal of Zoology 18, 9–23.Google Scholar
Lichtenfels, J.R. (1980) Keys to the genera of the subfamily Strongyloidea. pp. 1–41 in Anderson, R.C., Chabaud, A.G. & Willmott, S. (Eds) CIH keys to the nematode parasites of vertebrates, No. 7. Slough, Bucks, Commonwealth Agricultural Bureaux.Google Scholar
Lierz, M., Schuster, R., Ehrlein, J. & Göbel, T. (1998) Nachweis von Hovorkonema variegatum bei einem Habicht (Accipiter gentilis). Kleintierpraxis 43, 4346(in German).Google Scholar
Okulewicz, A. (1984) Cyathostoma variegatum (Creplin, 1849) Chapin, 1925 i Cyathostoma lari Blanchard, 1849 (Nematoda, Syngamidae) w Polsce. Wiadomosci Parazytologiczne 30, 5356(in Polish).Google Scholar
Ritchie, B.W., Harrison, G.J. & Harrison, L.R. (1994) Avian medicine: principles and application. 1384 pp. Lake Worth, Florida, Wingers Pub. Inc.Google Scholar
Rysavý, B. & Ryshikov, K.M. (1978) Helminths of fish-eating birds of the palaearctic. 318 pp. Moscow, Prague, USSR Academy of Sciences, Helminthological Laboratory, Czechoslovak Academy of Sciences, Institute of Parasitology.Google Scholar
Samson-Himmelstjerna, G., von Harder, A. & Schnieder, T. (2002) Quantitative analysis of ITS-2 sequences in trichostrongyle parasites. International Journal for Parasitology 32, 15291535.CrossRefGoogle Scholar
Schuster, R., Schaffer, T. & Shimalov, V. (2002) Die Helmithenfauna einheimischer Weißstörche (Ciconia ciconia). Berliner und Münchener Tierärztliche Wochenschrift 115, 435439(in German).Google ScholarPubMed
Simpson, V.R. & Harris, E.A. (1992) Cyathostoma lari (Nematoda) infection in birds of prey. Journal of the Zoological. Society of London 227, 655–659.CrossRefGoogle Scholar
Sokal, R.R. & Rohlf, F.J. (1997) Biometry. 887 pp. New York, W.H. Freeman and Company.Google Scholar
Spalding, M.G., Kinsella, J.M., Nesbitt, S.A., Folk, M.J. & Foster, G.W. (1996) Helminth and arthropod parasites of experimentally introduced whooping cranes in Florida. Journal of Wildlife Diseases 32, 44–50.Google Scholar
Stevenson, L.A., Chilton, N.B. & Gasser, R.B. (1995) Differentiation of Haemonchus placei from H. contortus (Nematoda: Trichostrongyloidea) by the ribosomal DNA second internal transcript spacer. International Journal for Parasitology 25, 483–488.CrossRefGoogle Scholar
Yamaguti, S. (1961) Systema Helminthum. Vol. III. The nematodes of vertebrates. Part 1. pp. 207–209. New York, London, Interscience Publishers, Inc.Google Scholar