Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-10T13:52:39.988Z Has data issue: false hasContentIssue false

A cytogenetic study on the rodent tapeworm Rodentolepis myoxi

Published online by Cambridge University Press:  12 April 2024

J.C. Casanova*
Affiliation:
Laboratori de Parasitologia, Facultat de Farmàcia, Universitat de Barcelona, Avda Diagonal s/n, 08028, Barcelona, Spain:
M. Spakulová
Affiliation:
Parasitological Institute SAS, Hlinkova 3, 04001, Košice, Slovak Republic
N. Laplana
Affiliation:
Laboratori de Parasitologia, Facultat de Farmàcia, Universitat de Barcelona, Avda Diagonal s/n, 08028, Barcelona, Spain:
*
*Fax: 934024504 E-mail: casanova@farmacia.far.ub.es

Abstract

The karyotype of glirid tapeworm Rodentolepis myoxi (Rudolphi, 1819) (Cestoda: Hymenolepididae) comprises six pairs of small bi-armed chromosomes (2n = 12). All pairs of chromosomes possess uniform morphology, i.e. metacentric, submetacentric or meta-submetacentric types of structures. The formula of the karyotype structure is n = 2m + 1m-sm + 3sm. The absolute chromosome length ranges from 3.78 to 2.00 μm. The mean total length of the haploid complement is 15.98 μm. The first pair (group A) is the largest, pairs 2 and 3 can be grouped into group B while pairs 4–6 are smaller and can be classified as group C. The number of chromosomes of R. myoxi is the same for the congeneric species, however, karyological characteristics differ from all recently known karyotypes of rodent hymenolepidids.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baer, J.G. (1932) Contribution a la faune helmintologique de Suisse, II. Revue Suisse de Zoologie 39, 156.Google Scholar
Barsiene, J. (1993) The karyotypes of trematodes. 370 pp. Vilnius, Academia (in Russian).Google ScholarPubMed
Bell, A.S., Sommerville, C. & Gibson, D.I. (1998) Karyological studies on three strigeid digeneans: Ichthyocotylurus erraticus (Rudolphi, 1809), I. variegatus (Creplin, 1825) and Apatemon gracilis (Rudolphi, 1819). Systematic Parasitology 41, 169178.CrossRefGoogle Scholar
Czaplinski, B. & Vaucher, C. (1994) Family Hymenolepididae Ariola, 1899. pp. 595664 in Khalil, L.F., Jones, A. & Bray, R.A. (Eds) Keys to the cestode parasites of vertebrates. Wallingford, UK, CAB International.Google Scholar
Georgiev, B., Biserkov, V. & Genov, T. (1986) In toto staining for cestodes with iron acetocarmine. Helminthologia 23, 279281.Google Scholar
Grossman, A.I. & Cain, G.D. (1981) Karyotype and chromosome morphologies of Megalodiscus temperatus and Philophthalmus gralli . Journal of Helminthology 55, 7178.CrossRefGoogle Scholar
Janicki, C. (1904) Zur Kenntnis einiger Saugetiercestoden. Zoologischer Anzeiger 27, 770782.Google Scholar
Janicki, C. (1906) Studien an Saugetiercestoden. Zeitschrift für Wissenschaftliche Zoologie 81, 505597.Google Scholar
Levan, A., Fredga, K. & Sandberg, A.A. (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52, 201220.CrossRefGoogle Scholar
Liu, G. & Lin, H. (1987) Studies on the cytogenetics of Cestoda I. The karyotype of Hymenolepis diminuta . Hereditas (Beijing) 9, 2627.Google Scholar
Lopez-Neyra, C.R. (1942) Revision del genero Hymenolepis Weinland. Revista Ibérica de Parasitología 2, 113256.Google Scholar
Mutafova, T. (1994) Karyological studies on some species of the families Echinostomatidae and Plagiorchiidae and aspects on chromosome evolution in trematodes. Systematic Parasitology 28, 229238.CrossRefGoogle Scholar
Mutafova, T. & Gergova, S. (1994) Cytological studies on three hymenolepidid species. Journal of Helminthology 68, 323325.CrossRefGoogle ScholarPubMed
Petkeviciuté, R. & Ieshko, E.P. (1991) The karyotypes of Triaenophorus nodulosus and T. crassus (Cestoda: Pseudophyllidea). International Journal for Parasitology 21, 1115.CrossRefGoogle Scholar
Petkeviciuté, R. & Regel, K.V. (1994) Karyometrical analysis of Microsomacanthus spasskii and M. spiralibursata . Journal of Helminthology 68, 5355.CrossRefGoogle ScholarPubMed
Petkeviciuté, R., Staneviciuté, G. & Kiseliené, V. (1995) Mitotic chromosomes of Sphaerostomum bramae (Müller, 1776) Szidat, 1944. Journal of Helminthology 69, 347349.CrossRefGoogle Scholar
Pojmanska, T. & Czaplinski, B. (1998) Some further proposition of new generic combinations or emendations for tape- worms recorded in Poland. Acta Parasitologica 46, 3638.Google Scholar
Proffitt, M.R. & Jones, A.W. (1969) Chromosome analysis of Hymenolepis microstoma . Experimental Parasitology 25, 7284.CrossRefGoogle ScholarPubMed
Skryabin, K.I. & Matevosyan, E.N. (1948) Hymenolepidids of mammals. Trudy Gelmintologicheskoi Laboratorii AN SSSR 1, 1592.Google Scholar
Spakulová, M. & Casanova, J.C. (1998) Chromosome analysis of Rodentolepis straminea (Cestoda: Hymenolepididae) parasitizing wood mice (Apodemus spp.) in Spain. Helminthologia 35, 185188.Google Scholar
Spaskii, A.A. (1950) New data on morphology and systematics of hymenolepidids (Cestoda: Hymenolepididae). Doklady Akademii Nauk SSSR, Seria Biologija 75, 895898.Google Scholar
Spasskii, A.A. (1954) Classification of hymenolepidids of mammals. Trudy Gelmintologicheskoi Laboratorii AN SSSR 7, 120167.Google Scholar
Vaucher, C. & Quentin, J.C. (1975) Présence du cysticercoide de Hymenolepis myoxi (Rud., 1819) ches la puce du lerot et redescription du ver adulte. Bulletin de la Societé Neuchateloise des Sciences Naturelles 98, 2734.Google Scholar
Ward, E.J., Evans, W.S. & Novak, M. (1981) Karyotype of Hymenolepis citelli (Cestoda: Cyclophyllidea). Canadian Journal of Genetics and Cytology 23, 449452.CrossRefGoogle Scholar
White, M.J.D. (1973) Animal cytology and evolution. London, Cambridge University Press.Google Scholar
Yamaguti, S. (1959) Systema helminthum. Vol. II. The cestodes of vertebrates. New York and London, Interscience Publishers.Google Scholar