Skip to main content Accessibility help
×
Home

A study of the surface mass balance in Dronning Maud Land, Antarctica, using automatic weather stationS

  • Michiel R. Van Den Broeke (a1), Carleen H. Reijmer (a1) and Roderik S.W. Van De Wal (a1)

Abstract

We use data from four automatic weather stations (AWSs) in Dronning Maud Land, East Antarctica, to study the surface mass balance and its components. Distinct differences were found between the moisture climates of the high plateau, the katabatic wind zone and the coastal ice shelves: significant undersaturation occurs year-round in the katabatic wind zone, while on the high plateau and on the coastal ice shelf the air is usually close to saturation. In summer, absorption of shortwave radiation at the snow surface enhances surface sublimation at all sites, removing 3-9% of the annual solid precipitation. Significant summer melting is an equally important ablation term near the coast, but vanishes inland. Vertically integrated column drifting-snow sublimation was estimated using two different methods. This process appears to be similar to or greater in magnitude than surface sublimation. Because intervals between significant precipitation events may last as long as several months, sublimation and melt cause extended periods of surface ablation in summer. In summer, all ablation processes together remove 15-56% of the solid precipitation, or 6-27% on an annual basis.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A study of the surface mass balance in Dronning Maud Land, Antarctica, using automatic weather stationS
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A study of the surface mass balance in Dronning Maud Land, Antarctica, using automatic weather stationS
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A study of the surface mass balance in Dronning Maud Land, Antarctica, using automatic weather stationS
      Available formats
      ×

Copyright

References

Hide All
Anderson, P.S. 1994. A method for rescaling humidity sensors at temperatures well below freezing. J. Atmos. Oceanic Technol., 11(5), 1388-1391.
Anderson, P.S. 1996. Reply to comments on ‘A method for rescaling humidity sensors at temperatures well below freezing’. J. Atmos. Oceanic Technol., 13(4), 913-914.
Andreas, E.L. 1987. A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice. Boundary-Layer Meteorol, 38(1-2), 159-184.
Andreas, E.L. 2002. Parameterizing scalar transfer over snow and ice: a review. J. Hydrometeorol., 3(4), 417-432.
Bintanja, R. 1998. The contribution of snowdrift sublimation to the surface mass balance of Antarctica. Ann. Glaciol., 27, 251-259.
Bintanja, R. 2000. The surface heat budget of Antarctic snow and blue ice: interpretation of temporal and spatial variability. J. Ceophys. Res., 105(D19), 24, 387-24, 407.
Bintanja, R. 2001a. Modelling snowdrift sublimation and its effect on the moisture budget of the atmospheric boundary layer. Tellus, 53A, 215-232.
Bintanja, R. 2001b. Modification of the wind speed profile caused by snowdrift: results from observations. Q. J. R. Meteorol. Soc., 127(577), 2417-2434.
Bintanja, R. 2001c. Snowdrift sublimation in a katabatic wind region of the Antarctic ice sheet. J. Appl. Meteorol., 40(11), 1952-1966.
Bintanja, R. and Reijmer, C.H.. 2001. A simple parameterization for snowdrift sublimation over Antarctic snow surfaces. J. Ceophys. Res., 106(D23), 31, 739-31, 748.
Bintanja, R. and van den Broeke, M.R.. 1995. The surface energy balance of Antarctic snow and blue ice. J. Appl. Meteorol., 34(4), 902-926.
Bintanja, R., Jonsson, S. and Knap, W.H.. 1997. The annual cycle of the surface energy balance of Antarctic blue ice. J. Geophys. Res., 102(D2), 1867-1881.
Brandt, R.E. and Warren, S.G.. 1993. Solar-heating rates and temperature profiles in Antarctic snow and ice. J. Claciol., 39(131), 99-110.
Bromwich, D.H. 1988. Snowfall in high southern latitudes. Rev. Geophys., 26(1), 149-168.
Bromwich, D.H. 1989. Satellite analyses of Antarctic katabatic wind behavior. Bull. Am. Meteorol. Soc., 70(7), 738-749.
Caroll, J.J. 1982. Long-term means and short-term variability of the surface energy balance components at the South Pole. J. Geophys. Res., 87(C6), 4277-4286.
Clow, G.D., McKay, C.P., Simmons, G.M. Jr and Wharton, R.A. Jr. 1988. Climatological observations and predicted sublimation rates at Lake Hoare, Antarctica. J. Climate, 1(7), 715-728.
Curry, J.A. and Webster, P.J.. 1999. Thermodynamics of atmospheres and oceans. San Diego, CA, Academic Press.
Denby, B. and Greuell, W.. 2000. The use of bulk and profile methods for determining surface heat fluxes in the presence of glacier winds. J. Glaciol., 46(154), 445-452.
Déry, S.J. and Stieglitz, M.. 2002. A note on surface humidity measurements in the cold Canadian environment. Boundary- Layer Meteorol., 102(3), 491-497.
Déry, S.J. and Yau, M.K.. 2001. Simulation of blowing snow in the Canadian Arctic using a double-moment model. Boundary- Layer Meteorol., 99(2), 297-316.
Déry, S.J. and Yau, M.K.. 2002. Large-scale mass balance effects of blowing snow and surface sublimation. J. Ceophys. Res., 107(D23). (10.1029/2001JD001251.)
Déry, S.J., Taylor, P.A. and Xiao, J.. 1998. The thermodynamic effects of sublimating snow in the atmospheric boundary layer. Boundary-Layer Meteorol., 89(2), 251-283.
Dyer, A.J. 1974. A review of flux-profile relationships. Boundary- Layer Meteorol., 7, 363-372.
Fujii, Y. 1979. Sublimation and condensation at the ice sheet surface of Mizuho station, Antarctica. Antarct. Rec., 67, 51-63.
Fujii, Y. and Kusunoki, K.. 1982. The role of sublimation and condensation in the formation of ice sheet surface at Mizuho Station, Antarctica. J. Geophys. Res., 87(C6), 4293-4300.
Gallée, H., Guyomarc’h, G. and Brun, E.. 2001. Impact of snowdrift on the Antarctic ice sheet surface mass balance: possible sensitivity to snow-surface properties. Boundary-Layer Meteorol., 99(1), 1-19.
Holtslag, A.A.M. and de Bruin, H.A.R.. 1988. Applied modeling of the nighttime surface energy balance over land. J. Appl. Meteorol., 27(6), 689-704.
Kaser, G. 1982. Measurements of evaporation from snow. Arch. Meteorol. Geophys. Bioklimatol., Ser. B, 30(4), 333-340.
King, J.C. and Anderson, P.S.. 1999. A humidity climatology for Halley, Antarctica, based on frost-point hygrometer measurements. Antarct. Sci., 11(1), 100-104.
King, J.C. and Turner, J.. 1997.Antarctic meteorology and climatology. Cambridge, Cambridge University Press.
King, J.C., Anderson, P.S., Smith, M.C. and Mobbs, S.D.. 1996. The surface energy and mass balance at Halley, Antarctica during winter. J. Ceophys. Res., 101(D14), 19, 119-19, 128.
King, J.C., Anderson, P.S. and Mann, G.W.. 2001. The seasonal cycle of sublimation at Halley, Antarctica. J. Glaciol., 47(156), 1-8.
Li, L. and Pomeroy, J.W.. 1997. Estimates of threshold wind speeds for snow transport using meteorological data. J. Appl. Meteorol., 36(3), 205-213.
Liljequist, G.H. 1957. Energy exchange of an Antarctic snow-field: surface inversions and turbulent heat transfer (Maudheim 71°03’S, 10°56’W). Norwegian-British-Swedish Antarctic Expedition, 1949-52. Sci. Results, 2(1D), 235-298.
Liston, G.E., Winther, J.-G., Bruland, O., Elvehøy, H. and Sand, K.. 1999. Below-surface ice melt on the coastal Antarctic ice sheet. J. Claciol., 45(150), 273-285.
Loewe, F. 1970. The transport of snow on ice sheets by the wind. In Radok, U., ed. Studies on drifting snow. Melbourne, University of Melbourne. Meteorology Department, 21-69. (Meteorology Report 13.)
Makkonen, L. 1996. Comments on ’A method for rescaling humidity sensors at temperatures well below freezing’. J. Atmos. Oceanic Technol., 13(4), 911-912.
Mann, G.W., Anderson, P.S. and Mobbs, S.D.. 2000. Profile measurements of blowing snow at Halley, Antarctica. J. Ceophys. Res., 105(D19), 24, 491-24, 508.
Ohata, T., Ishikawa, N., Kobayashi, S. and Kawaguchi, S.. 1985. Heat balance at the snow surface in a katabatic wind zone, East Antarctica. Ann. Claciol., 6, 174-177.
Pettre, P., Pinglot, J.F., Pourchet, M. and Reynaud, L.. 1986. Accumulation distribution in Terre Adélie, Antarctica: effect of meteorological parameters. J. Glaciol., 32(112), 486-500.
Pomeroy, J.W. and Essery, R.L.H.. 1999. Turbulent fluxes during blowing snow: field test of model sublimation predictions. Hydrol. Processes, 13, 2963-2975.
Reijmer, C.H. and Oerlemans, J.. 2002. Temporal and spatial variability of the surface energy balance in Dronning Maud Land, East Antarctica. J. Geophys. Res., 107(D24), 4759-4770. (10.1029/2000JD000110.)
Reijmer, C.H. and van den Broeke, M.R.. 2003. Temporal and spatial variability of the surface mass balance in Dronning Maud Land, Antarctica, as derived from automatic weather stations. J. Glaciol., 49(167), 512-520.
Scambos, T.A., Hulbe, C., Fahnestock, M. and Bohlander, J.. 2000. The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. J. Glaciol., 46(154), 516-530.
Schlatter, T.W. 1972. The local surface energy balance and subsurface temperature regime in Antarctica. J. Appl. Meteorol., 11(7), 1048-1062.
Schmidt, R.A. 1982. Vertical profiles of wind speed, snow concentration and humidity in blowing snow. Boundary-Layer Meteorol, 23(2), 223-246.
Schmidt, R.A. 1986. Transport rate of drifting snow and the mean wind speed profile. Boundary-Layer Meteorol., 34(3), 213-241.
Schneider, D.P. and Steig, E.J.. 2002. Spatial and temporal variability of Antarctic ice sheet microwave brightness temperatures. Geophys. Res. Lett., 29(20) (10.1029/2002GL015490.)
Stearns, C.R. and Weidner, G.A.. 1993. Sensible and latent heat flux estimates in Antarctica. In Bromwich, D.H. and Stearns, C. R., eds. Antarctic meteorology and climatology: studies based on automatic weather stations. Washington, DC, American Geophysical Union, 109-138. (Antarctic Research Series 61.)
Takahashi, S. 1988. A preliminary estimation of drifting snow convergence along a flow line of Shirase Glacier, East Antarctica. Bull. Glacier Res., 6, 41-46.
Takahashi, S., Naruse, R., Nakawo, M. and Mae, S.. 1988. A bare ice field in east Queen Maud Land, Antarctica, caused by horizontal divergence of drifting snow. Ann. Glaciol., 11, 156-160.
Van den Broeke, M.R. 1997. Spatial and temporal variation of sublimation on Antarctica: results of a high-resolution general circulation model. J. Geophys. Res., 102(D25). (10.1029/ 97JD01862.)
Van den Broeke, M.R. and Bintanja, R.. 1995. The interaction of katabatic winds and the formation of blue-ice areas in East Antarctica. J. Glaciol., 41(138), 395-407.
Van den Broeke, M.R. and van Lipzig, N.P.M.. 2003. Factors controlling the near surface wind field in Antarctica. Mon. Weather Rev., 131(4), 733-743.
Van den Broeke, M.R. and 6 others. 1999. Climate variables along a traverse line in Dronning Maud Land, East Antarctica. J. Glaciol., 45(150), 295-302.
Van den Broeke, M.R., van Lipzig, N.P.M. and van Meijgaard, E.. 2002. Momentum budget of the East-Antarctic atmospheric boundary layer: results of a regional climate model. J. Atmos. Sci, 59(21), 3117-3129.
Van den Broeke, M.R., van, D. As, Reijmer, C.H. and Van de Wal, R.S.W.. 2003. Assessing and improving the quality of unattended radiation observations in Antarctica. J. Atmos. Oceanic Tech- nol, 21(9), 1417-1431.
Van den Broeke, M.R., van, D. As, Reijmer, C.H. and Van de Wal, R.S.W.. 2004. The surface radiation balance in Antarctica as measured with automatic weather stations. J. Geophys. Res., 109(D9). (10.1029/2003JD004394.)
Vaughan, D.G., Bamber, J.L., Giovinetto, M.B., Russell, J. and Cooper, A.P.R.. 1999. Reassessment of net surface mass balance in Antarctica. J. Climate, 12(4), 933-946.
Wamser, C. and Lykossov, V.N.. 1995. On the friction velocity during blowing snow. Contrib. Atmos. Phys., 68(1), 85-94.
Wendler, G., Ishikawa, N. and Kodama, Y.. 1988. The heat balance of the icy slope of Adelie Land, eastern Antarctica. J. Appl. Meteorol., 27(1), 52-65.
Wiscombe, W.J. and Warren, S.G.. 1980. A model for the spectral albedo of snow. I. Pure snow. J. Atmos. Sci., 37(12), 2712-2733.
Xiao, J., Bintanja, R., Déry, S.J., Mann, G. and Taylor, P.A.. 2000. An intercomparison between three models of blowing snow in the atmospheric boundary layer. Boundary-Layer Meteorol., 97(1), 109-135.

A study of the surface mass balance in Dronning Maud Land, Antarctica, using automatic weather stationS

  • Michiel R. Van Den Broeke (a1), Carleen H. Reijmer (a1) and Roderik S.W. Van De Wal (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed