Skip to main content Accessibility help
×
Home

Statistical summer mass-balance forecast model with application to Brúarjökull glacier, South East Iceland

  • DARRI EYTHORSSON (a1), SIGURDUR M. GARDARSSON (a1), ANDRI GUNNARSSON (a2) and BIRGIR HRAFNKELSSON (a3)

Abstract

Forecasting of glacier mass balance is important for optimal management of hydrological resources, especially where glacial meltwater constitutes a significant portion of stream flow, as is the case for many rivers in Iceland. In this study, a method was developed and applied to forecast the summer mass balance of Brúarjökull glacier in southeast Iceland. In the present study, many variables measured in the basin were evaluated, including glaciological snow accumulation data, various climate indices and meteorological measurements including temperature, humidity and radiation. The most relevant single predictor variables were selected using correlation analysis. The selected variables were used to define a set of potential multivariate linear regression models that were optimized by selecting an ensemble of plausible models showing good fit to calibration data. A mass-balance estimate was calculated as a uniform average across ensemble predictions. The method was evaluated using fivefold cross-validation and the statistical metrics Nash–Sutcliffe efficiency, the ratio of the root mean square error to the std dev. and percent bias. The results showed that the model produces satisfactory predictions when forced with initial condition data available at the beginning of the summer melt season, between 15 June and 1 July, whereas less reliable predictions are produced for longer lead times.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Statistical summer mass-balance forecast model with application to Brúarjökull glacier, South East Iceland
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Statistical summer mass-balance forecast model with application to Brúarjökull glacier, South East Iceland
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Statistical summer mass-balance forecast model with application to Brúarjökull glacier, South East Iceland
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence: Darri Eythorsson <dae5@hi.is>

References

Hide All
Aðalgeirsdóttir, G, Johannesson, T, Bjornsson, H, Palsson, F and Sigurdsson, O (2006) Response of Hofsjokull and southern Vatnajokull, Iceland, to climate change. J. Geophys. Res. Earth Surf., 111, F03001 (doi: 10.1029/2005jf000388)
Aðalgeirsdóttir, G and 6 others (2011) Modelling the 20th and 21st century evolution of Hoffellsjokull glacier, SE-Vatnajokull, Iceland. Cryosphere 5, 961975 (doi: 10.5194/tc-5–961–2011)
Baldwin, MP and 5 others (2003) Stratospheric memory and skill of extended-range weather forecasts. Science (New York, N.Y.), 301(5633), 636640 (doi: 10.1126/science.1087143)
Barnett, TP, Adam, JC and Lettenmaier, DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438(7066), 303309 (doi: 10.1038/nature04141)
Bjornsson, H and Palsson, F (2008) Icelandic glaciers. Jökull, 58(58), 365386.
Bjornsson, H and 6 others (2013) Contribution of Icelandic ice caps to sea level rise: trends and variability since the Little Ice Age. Geophys. Res. Lett., 40(8), 15461550 (doi: 10.1002/grl.50278)
Buckland, ST, Burnham, KP and Augustin, NH (1997) Model selection: an integral part of inference. Biometrics, 53(2), 603 (doi: 10.2307/2533961)
Burnham, KP and Anderson, DR (2002) Model selection and multimodel inference, Springer, New York (doi: 10.1007/978-3-319-02868-2_3)
Carenzo, M, Pellicciotti, F, Rimkus, S and Burlando, P (2009) Assessing the transferability and robustness of an enhanced temperature-index glacier-melt model. J. Glaciol., 55(190), 258274 (doi: 10.3189/002214309788608804)
De Ruyter de Wildt, M, Klok, E and Oerlemans, J (2003a) Reconstruction of the mean specific mass-balance of Vatnajokull (Iceland) with a seasonal sensitivity characteristic. Geogr. Ann. Ser. A Phys. Geogr., 85(1), 5772. (doi: 10.1111/1468-0459.00189)
De Ruyter de Wildt, M, Oerlemans, J and Bjornsson, H (2003b) A calibrated mass-balance model for Vatnajökull, Iceland. Jökull, 52, 120.
Diks, CGH and Vrugt, JA (2010) Comparison of point forecast accuracy of model averaging methods in hydrologic applications. Stoch. Environ. Res. Risk Assess., 24(6), 809820 (doi: 10.1007/s00477-010-0378-z)
Drolon, V, Maisongrande, P, Berthier, E, Swinnen, E and Huss, M (2016) Monitoring of seasonal glacier mass-balance over the European Alps using low-resolution optical satellite images. J. Glaciol., 62(235), 912927 (doi: 10.1017/jog.2016.78)
Enfield, DB, Mestas-Nuñez, AM and Trimble, PJ (2001) The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28(10), 20772080 (doi: 10.1029/2000GL012745)
Engelhardt, M, Schuler, TV and Andreassen, LM (2014) Contribution of snow and glacier melt to discharge for highly glacierised catchments in Norway. Hydrol. Earth Syst. Sci., 18(2), 511523 (doi: 10.5194/hess-18-511-2014)
Fujita, K and Ageta, Y (2000) Effect of summer accumulation on glacier mass-balance on the Tibetan Plateau revealed by mass-balance model. J. Glaciol., 46(153), 244252 (https://doi.org/10.3189/172756500781832945)
Gardarsson, SM and Eliasson, J (2006) Influence of climate warming on Halslon reservoir sediment filling. Nord. Hydrol., 26, 553569 (doi: 10.2166/nh.2006.014)
Ghosh, R, Müller, WA, Baehr, J and Bader, J (2017) Impact of observed North Atlantic multidecadal variations to European summer climate: a linear baroclinic response to surface heating. Clim. Dyn., 48(11–12), 35473563 (doi: 10.1007/s00382-016-3283-4)
Gudmundsson, S and 6 others (2011) Response of Eyjafjallajokull, Torfajokull and Tindfjallajokull ice caps in Iceland to regional warming, deduced by remote sensing. Polar Res., 30 (doi: 10.3402/Polar.V30i0.7282)
Hanna, E, Jónsson, T and Box, JE (2001) Recent changes in Icelandic climate. Spring, 61, 39 (doi: 10.1256/wea.80.04)
Hanna, E, Jónsson, T and Box, JE (2004) An analysis of Icelandic climate since the nineteenth century. Int. J. Climatol., 24(10), 11931210 (doi: 10.1002/joc.1051)
Hjort, NL and Claeskens, G (2003) Frequentist model average estimators. J. Am. Stat. Assoc., 98(464), 879899 (doi: 10.1198/016214503000000828)
Hoeting, JA, Madigan, D, Raftery, AE and Volinsky, CT (1999) Bayesian model averaging: a tutorial. Stat. Sci., 14(4), 382417 (doi: 10.2307/2676803)
James, G, Witten, D, Tibshirani, R and Hastie, T (2013) An introduction to statistical learning with applications in R, Springer, New York (doi: 10.1007/978-1-4614-7138-7)
Jonsdóttir, JF (2010) A runoff map based on numerically simulated precipitation and a projection of future runoff in Iceland. Hydrol. Sci. J., 53, 100111 (doi: 10.1623/hysj.53.1.100)
Kalra, A, Ahmad, S and Nayak, A (2013) Increasing streamflow forecast lead time for snowmelt-driven catchment based on large-scale climate patterns. Adv. Water Resour., 53, 150162 (doi: 10.1016/j.advwatres.2012.11.003)
Kjær, KH, Korsgaard, NJ and Schomacker, A (2008) Impact of multiple glacier surges – a geomorphological map from Bruarjokull, East Iceland. J. Maps, 4(1), 520 (doi: 10.4113/jom.2008.91)
Larsen, G (1998) Eight centuries of periodic volcanism at the center of the Iceland hotspot revealed by glacier tephrostratigraphy. Geology, 26(10), 943946 (doi: 10.1130/0091-7613(1998)026<0943:ECOPVA>2.3.CO;2)
Liang, H, Zou, G, Wan, ATK and Zhang, X (2011) Optimal weight choice for frequentist model average estimators. J. Am. Stat. Assoc., 106(495), 10531066 (doi: 10.1198/jasa.2011.tm09478)
Liu, W and 5 others (2015) Impacts of climate change on hydrological processes in the Tibetan Plateau: a case study in the Lhasa River basin. Stoch. Environ. Res. Risk Assess., 29(7), 18091822 (doi: 10.1007/s00477-015-1066-9)
Madigan, D and Raftery, AE (1994) Model selection and accounting for model uncertainty in graphical models using Occam's Window. J. Am. Stat. Assoc., 89(428), 15351546 (doi: 10.1080/01621459.1994.10476894)
Marshall, SJ, Bjornsson, H, Flowers, GE and Clarke, GKC (2005) Simulation of Vatnajokull ice cap dynamics. J. Geophys. Res. Earth Surf., 110, F03009 (doi: 10.1029/2004JF000262)
Matthews, T, Hodgkins, R, Gudmundsson, S, Palsson, F and Bjornsson, H (2015) Inter-decadal variability in potential glacier surface melt energy at Vestari Hagafellsjokull (Langjokull, Iceland) and the role of synoptic circulation. Int. J. Climatol., 35(10), 30413057 (doi: https://doi.org/10.1002/joc.4191)
Moller, R and 7 others (2014) MODIS-derived albedo changes of Vatnajokull (Iceland) due to tephradeposition from the 2004 Grimsvotn eruption. Int. J. Appl. Earth Obs. Geoinf., 26(1), 256269 (doi: 10.1016/j.jag.2013.08.005)
Moriasi, DN and 5 others (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE, 50(3), 885900 (doi: 10.13031/2013.23153)
Oladottir, BA, Larsen, G and Sigmarsson, O (2011) Holocene volcanic activity at Grimsvotn, Bardarbunga and Kverkfjoll subglacial centres beneath Vatnajokull, Iceland. Bull. Volcanol., 73(9), 11871208 (doi: 10.1007/S00445-011-0461-4)
Palsson, F and 5 others (2014) Vatnajokull: mass-balance, melt water drainage and surface velocity of the glacial year 2013–14. Landsvirkjun. Report No LV-2014-138 (Retrieved 01/05/2017, http://gogn.lv.is/files/2014/2014-138.pdf)
Palter, JB (2015) The role of the Gulf Stream in European climate. Ann. Rev. Mar. Sci., 7(1), 113137 (doi: 10.1146/annurev-marine-010814-015656)
Qiu, L, You, J, Qiao, F and Peng, D (2014) Simulation of snowmelt runoff in ungauged basins based on MODIS: a case study in the Lhasa River basin. Stoch. Environ. Res. Risk Assess., 28(6), 15771585 (doi: 10.1007/s00477-013-0837-4)
Raftery, AE, Madigan, D and Hoeting, JA (1997) Bayesian model averaging for linear regression models. J. Am. Stat. Assoc., 92(437), 179191 (doi: 10.1080/01621459.1997.10473615)
Rasmussen, LA (2005) Mass-balance of Vatnajokull reconstructed back to 1958. Jokull, 55, 139146
Réveillet, M, Vincent, C, Six, D and Rabatel, A (2017) Which empirical model is best suited to simulate glacier mass-balances? J. Glaciol., 63(237), 3954 (doi: 10.1017/jog.2016.110)
Roe, GH, Baker, MB and Herla, F (2017) Centennial glacier retreat as categorical evidence of regional climate change. Nat. Geosci., 10(2), 9599 (doi: 10.1038/ngeo2863)
Schöner, W and Böhm, R (2007) A statistical mass-balance model for reconstruction of LIA ice mass for glaciers in the European Alps. Ann. Glaciol., 44, 161169 (doi: 10.3189/172756407782871639)
Thorsteinsson, T, Einarsson, B and Kjartansson, V (2004) Afkoma Hofsjokuls 1997–2004. Icelandic National Energy Authority, Reykjavik, Report NO OS-2004/029
Tsai, FTC (2010) Bayesian model averaging assessment on groundwater management under model structure uncertainty. Stoch. Environ. Res. Risk Assess., 24(6), 845861 (doi: 10.1007/s00477-010-0382-3)
Wang, H, Zhang, X and Zou, G (2009) Frequentist model averaging estimation: a review. J. Syst. Sci. Complex., 22, 732748 (doi: 10.1007/s11424-009-9198-y)
Zampieri, M, Toreti, A, Schindler, A, Scoccimarro, E and Gualdi, S (2017) Atlantic multi-decadal oscillation influence on weather regimes over Europe and the Mediterranean in spring and summer. Glob. Planet. Change, 151, 92100 (doi: 10.1016/j.gloplacha.2016.08.014)
Zemp, M and 38 others (2015) Historically unprecedented global glacier decline in the early 21st century. J. Glaciol., 61(228), 745762 (doi: 10.3189/2015JoG15J017)
Zhang, X, Wan, ATK and Zhou, SZ (2012) Focused information criteria, model selection, and model averaging in a tobit model with a nonzero threshold. J. Bus. Econ. Stat., 30(1), 132142 (doi: 10.1198/jbes.2011.10075)

Keywords

Statistical summer mass-balance forecast model with application to Brúarjökull glacier, South East Iceland

  • DARRI EYTHORSSON (a1), SIGURDUR M. GARDARSSON (a1), ANDRI GUNNARSSON (a2) and BIRGIR HRAFNKELSSON (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed