Skip to main content Accessibility help
×
Home

Snow/atmosphere coupled simulation at Dome C, Antarctica

  • Eric Brun (a1), Delphine Six (a2), Ghislain Picard (a2), Vincent Vionnet (a1), Laurent Arnaud (a2), Eric Bazile (a1), Aaron Boone (a1), Aurélie Bouchard (a1), Christophe Genthon (a2), Vincent Guidard (a1), Patrick Le Moigne (a1), Florence Rabier (a1) and Yann Seity (a1)...

Abstract

Using a snow/atmosphere coupled model, the evolution of the surface and near-surface snow temperature is modeled at Dome C, Antarctica, during the period 20–30 January 2010. Firstly, the detailed multilayer snow model Crocus is run in stand-alone mode, with meteorological input forcing data provided by local meteorological observations. The snow model is able to simulate the evolution of surface temperature with good accuracy. It reproduces the observed downward propagation of the diurnal heatwave into the upper 50 cm of the snowpack reasonably well. Secondly, a fully coupled 3-D snow/atmosphere simulation is performed with the AROME regional meteorological model, for which the standard single-layer snow parameterization is replaced by Crocus. In spite of a poor simulation of clouds, the surface and near-surface snow temperatures are correctly simulated, showing neither significant bias nor drifts during the simulation period. The model reproduces particularly well the average decrease of the diurnal amplitude of air temperature from the surface to the top of the 45 m instrumented tower. This study highlights the potential of snow/atmosphere coupled models over the Antarctic plateau and the need to improve cloud microphysics and data assimilation over polar regions.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Snow/atmosphere coupled simulation at Dome C, Antarctica
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Snow/atmosphere coupled simulation at Dome C, Antarctica
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Snow/atmosphere coupled simulation at Dome C, Antarctica
      Available formats
      ×

Copyright

References

Hide All
Anderson, E.A. 1976. A point energy and mass balance model of a snow cover. NOAA Tech. Rep. NWS-19.
Anderson, P.S. and Neff, W.D.. 2006. Boundary layer physics over snow and ice. Atmos. Chem. Phys., 8(13), 35633582.
Andreas, E.L. 2002. Parameterizing scalar transfer over snow and ice: a review. J. Hydromet., 3(4), 417432.
Armstrong, R. L. and Brun, E., eds. 2008. Snow and climate: physical processes, surface energy exchange and modelling. Cambridge etc., Cambridge University Press.
Beljaars, A. and Holtslag, A.. 1991. Flux parameterization over land surface for atmospheric models. J. Appl. Meteorol., 30(3), 327341.
Bintanja, R. and van den Broeke, M.R.. 1995. The surface energy balance of Antarctic snow and blue ice. J. Appl. Meteorol., 34(4), 902926.
Boone, A. and Etchevers, P.. 2001. An intercomparison of three snow schemes of varying complexity coupled to the same land surface model: local-scale evaluation at an Alpine site. J. Hydromet., 2(4), 374394.
Bouchard, A., Rabier, F., Guidard, V. and Karbou, F.. 2010. Enhancements of satellite data assimilation over Antarctica. Mon. Weather Rev., 138(6), 21492173.
Bougeault, P. and Lacarrère, P.. 1989. Parameterization of orographyinduced turbulence in a mesobeta-scale model. Mon. Weather Rev., 117(8), 18721890.
Bromwich, D.H., Monaghan, A.J., Manning, K.W. and Powers, J.G.. 2005. Real-time forecasting for the Antarctic: an evaluation of the Antarctic Mesoscale Prediction System (AMPS). Mon. Weather Rev., 133(3), 579603.
Brucker, L., Picard, G. and Fily, M.. 2010. Snow grain-size profiles deduced from microwave snow emissivities in Antarctica. J. Glaciol., 56(197), 514526.
Brun, E., Martin, E., Simon, V., Gendre, C. and Coléou, C.. 1989. An energy and mass model of snow cover suitable for operational avalanche forecasting. J. Glaciol., 35(121), 333342.
Brun, E., David, P., Sudul, M. and Brunot, G.. 1992. A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting. J. Glaciol., 38(128), 1322.
Brun, E., Martin, E. and Spiridonov, V.. 1997. Coupling a multi-layered snow model with a GCM. Ann. Glaciol., 25, 6672.
Comiso, J.C. 1994. Surface temperatures in the polar regions from Nimbus 7 temperature humidity infrared radiometer. J. Geophys. Res., 99(C3), 51815200.
Comiso, J.C. 2000. Variability and trends in Antarctic surface temperatures from in situ and satellite infrared measurements. J. Climate, 13(10), 16741696.
Courtier, P., Thépaut, J.-N. and Hollingsworth, A.. 1994. A strategy for operational implementation of 4D-Var, using an incremental approach. Q. J. R. Meteorol. Soc., 120(519), 13671387.
Dadic, R., Schneebeli, M., Lehning, M., Hutterli, M.A. and Ohmura, A.. 2008. Impact of the microstructure of snow on its temperature: a model validation with measurements from Summit, Greenland. J. Geophys. Res., 113(D14), D14303. (10.1029/2007JD009562.)
Dang, H., Genthon, C. and Martin, E.. 1997. Numerical modeling of snow cover over polar ice sheets. Ann. Glaciol., 25, 170176.
Douville, H., Royer, J.F. and Mahfouf, J.F.. 1995a. A new snow parameterization for the Météo-France climate model. Part I. Validation in stand-alone experiments. Climate Dyn., 12(1), 2135.
Douville, H., Royer, J.F. and Mahfouf, J.F.. 1995b. A new snow parameterization for the Météo-France climate model. Part II. Validation in a 3-D GCM experiment. Climate Dyn., 12(1), 3752.
Dozier, J. and Warren, S.G.. 1982. Effect of viewing angle on the infrared brightness temperature of snow. Water Resour. Res., 18(5), 14241434.
Essery, R. and Yang, Z.L.. 2001. An overview of models participating in the Snow Model Intercomparison Project (SnowMIP). In Proceedings of the SnowMIP Workshop, 11 July 2001, 8th Scientific Assembly of IAMAS, Innsbruck. Innsbruck, International Association of Meteorology and Atmospheric Sciences.
Etchevers, P. and 22 others. 2004. Validation of the energy budget of an alpine snowpack simulated by several snow models (SnowMIP project). Ann. Glaciol., 38, 150158.
Fogt, R.L. and Bromwich, D.H.. 2008. Atmospheric moisture and cloud cover characteristics forecast by AMPS. Weather Forecast., 23(5), 914930.
Gallée, H. and Gorodetskaya, I.V.. 2008. Validation of a limited area model over Dome C, Antarctic Plateau, during winter. Climate Dyn., 34(1), 6172.
Gallée, H., Guyomarc’h, G. and Brun, E.. 2001. Impact of snowdrift on the Antarctic ice sheet surface mass balance: possible sensitivity to snow-surface properties. Bound.-Layer Meteorol., 99(1), 119.
Genthon, C., Town, M.S., Six, D., Favier, V., Argentini, S. and Pellegrini, A.. 2010. Meteorological atmospheric boundary layer measurements and ECMWF analyses during summer at Dome C, Antarctica. J. Geophys. Res., 115(D5), D05104. (10.1029/2009JD012741.)
Gettelman, A., Walden, V.P., Miloshevich, L.M., Roth, W.L. and Halter, B.. 2006. Relative humidity over Antarctica from radiosondes, satellites, and a general circulation model. J. Geophys. Res., 111(D9), D09S13. (10.1029/2005JD006636.)
Guyomarc’h, G. and Mérindol, L.. 1998. Validation of an application for forecasting blowing snow. Ann. Glaciol., 26, 138143.
Jordan, R. 1991. A one-dimensional temperature model for a snow cover: technical documentation for SNTHERM.89. CRREL Spec. Rep. 91–16.
Jordan, R.E., Andreas, E.L. and Makshtas, A.P.. 1999. Heat budget of snow-covered sea ice at North Pole 4. J. Geophys. Res., 104(C4), 77857806.
Karbou, F. and Prigent, C.. 2005. Calculation of microwave land surface emissivity from satellite observations: validity of the specular approximation over snow-free surfaces. IEEE Geosci. Remote Sens. Lett., 2(3), 311314.
King, J.C., Connolley, W.M. and Derbyshire, S.H.. 2001. Sensitivity of modelled Antarctic climate to surface and boundary-layer flux parametrizations. Q. J. R. Meteorol. Soc., 127(573), 779794.
Kuipers Munneke, P. and 6 others. 2009. The role of radiation penetration in the energy budget of the snowpack at Summit, Greenland. Cryosphere, 3(2), 155165.
Lanconelli, C. and 7 others. 2011. Polar baseline surface radiation measurements during the International Polar Year 2007–2009. Earth Syst. Sci. Data, 3, 18.
Liston, G.E., Pielke, R.A. and Greene, E.M.. 1999. Improving first-order snow-related deficiencies in a regional climate model. J. Geophys. Res., 104(D16), 19,55919,567.
Louis, J.F. 1979. A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteorol., 17(2), 187202.
Martin, E. and Lejeune, Y.. 1998. Turbulent fluxes above the snow surface. Ann. Glaciol., 26, 179183.
Mascart, P., Noilhan, J. and Giordani, H.. 1995. A modified parameterization of flux-profile relationships in the surface layer using different roughness length values for heat and momentum. Bound.-Layer Meteorol., 72(4), 331344.
Noilhan, J. and Mahfouf, J.F.. 1996. The ISBA land-surface parameterization scheme. Global Planet. Change, 13(1–4), 145159.
Ohmura, A. and 14 others. 1998. Baseline surface radiation network (BSRN/WCRP): new precision radiometry for climate research. Bull. Am. Meteorol. Soc., 79(10), 21152136.
Pergaud, J., Masson, V., Malardel, S. and Couvreux, F.. 2009. A parameterization of dry thermals and shallow cumuli for mesoscale numerical weather prediction. Bound.-Layer Meteorol., 132(1), 83106.
Picard, G. and Fily, M.. 2006. Surface melting observations in Antarctica by microwave radiometers: correcting 26-year time series from changes in acquisition hours. Remote Sens. Environ., 104(3), 325336.
Picard, G., Brucker, L., Fily, M., Gallée, H. and Krinner, G.. 2009. Modeling time series of microwave brightness temperature in Antarctica. J. Glaciol., 55(191), 537551.
Powers, J.G., Monaghan, A.J., Cayette, A.M., Bromwich, D.H., Kuo, Y.-H. and Manning, K.W.. 2003. Real-time mesoscale modeling over Antarctica: the Antarctic Mesoscale Prediction System (AMPS). Bull. Am. Meteorol. Soc., 84(11), 15331545.
Rabier, F., Järvinen, H., Klinker, E., Mahfouf, J.F. and Simmons, A.. 2000. The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics. Q. J. R. Meteorol. Soc., 126(564), 11431170.
Rabier, F. and 36 others. 2010. The Concordiasi Project in Antarctica. Bull. Am. Meteorol. Soc., 91(1), 6986.
Salgado, R. and Le Moigne, P.. 2010. Coupling of the FLake model to the Surfex externalized surface model. Boreal Environ. Res., 15, 231244.
Seity, Y. and 7 others. 2011. The AROME-France Convective-Scale Operational Model. Mon. Weather Rev., 139(3), 976991.
Slater, A.G. and 33 others. 2001. The representation of snow in land surface schemes: results from PILPS 2. J. Hydromet., 2(1), 725.
Sukoriansky, S., Galperin, B. and Perov, V.. 2006. A quasi-normal scale elimination model of turbulence and its application to stably stratified flows. Nonlinear Process. Geophys., 13(1), 922.
Town, M.S. and Walden, V.P.. 2009. Surface energy budget over the South Pole and turbulent heat fluxes as a function of an empirical bulk Richardson number. J. Geophys. Res., 114(D22), D22107. (10.1029/2009JD011888.)
Town, M.S., Waddington, E.D., Walden, V.P. and Warren, S.G.. 2008. Temperatures, heating rates and vapour pressures in near-surface snow at the South Pole. J. Glaciol., 54(186), 487498.
Van de Berg, W.J., van den Broeke, M.R. and van Meijgaard, E.. 2008. Spatial structures in the heat budget of the Antarctic atmospheric boundary layer. Cryosphere, 2(1), 112.
Van den Broeke, M.R., Reijmer, C.H., van As, D., van de Wal, R.S.W. and Oerlemans, J.. 2005. Seasonal cycles of Antarctic surface energy balance from automatic weather stations. Ann. Glaciol., 41, 131139.
Van den Broeke, M., König-Langlo, G., Picard, G., Kuipers Munneke, P. and Lenaerts, J.. 2010. Surface energy balance, melt and sublimation at Neumayer Station, East Antarctica. Antarct. Sci., 22(1), 8796.
Wan, Z. and Dozier, J.. 1996. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens., 34(4), 892905.
Warren, S.G. 1982. Optical properties of snow. Rev. Geophys., 20(1), 6789.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed