Skip to main content Accessibility help
×
Home

Sedimentological characterization of Antarctic moraines using UAVs and Structure-from-Motion photogrammetry

  • Matthew J. Westoby (a1), Stuart A. Dunning (a1), John Woodward (a1), Andrew S. Hein (a2), Shasta M. Marrero (a2), Kate Winter (a1) and David E. Sugden (a2)...

Abstract

In glacial environments particle-size analysis of moraines provides insights into clast origin, transport history, depositional mechanism and processes of reworking. Traditional methods for grain-size classification are labour-intensive, physically intrusive and are limited to patch-scale (1 m2) observation. We develop emerging, high-resolution ground- and unmanned aerial vehicle-based ‘Structure-from-Motion’ (UAV-SfM) photogrammetry to recover grain-size information across a moraine surface in the Heritage Range, Antarctica. SfM data products were benchmarked against equivalent datasets acquired using terrestrial laser scanning, and were found to be accurate to within 1.7 and 50 mm for patch- and site-scale modelling, respectively. Grain-size distributions were obtained through digital grain classification, or ‘photo-sieving’, of patch-scale SfM orthoimagery. Photo-sieved distributions were accurate to <2 mm compared to control distributions derived from dry-sieving. A relationship between patch-scale median grain size and the standard deviation of local surface elevations was applied to a site-scale UAV-SfM model to facilitate upscaling and the production of a spatially continuous map of the median grain size across a 0.3 km2 area of moraine. This highly automated workflow for site-scale sedimentological characterization eliminates much of the subjectivity associated with traditional methods and forms a sound basis for subsequent glaciological process interpretation and analysis.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Sedimentological characterization of Antarctic moraines using UAVs and Structure-from-Motion photogrammetry
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Sedimentological characterization of Antarctic moraines using UAVs and Structure-from-Motion photogrammetry
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Sedimentological characterization of Antarctic moraines using UAVs and Structure-from-Motion photogrammetry
      Available formats
      ×

Copyright

Copyright © International Glaciological Society 2015 This is an Open Access article, distributed under the terms of the Creative Commons Attribution license. (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence: Matthew J. Westoby <matt.westoby@northumbria.ac.uk>

References

Hide All
Adams, J (1979) Gravel size analysis from photographs. J. Hydraul. Div. Am. Soc. Civil Eng., 105(10), 12471255
Agisoft, (2014) Agisoft PhotoScan Professional Edition v.1.1.0. http://www.agisoft.com.
Anderson, SP (2005) Glaciers show direct linkage between erosion rate and chemical weathering fluxes. Geomorphology, 67(1–2), 147157 (doi: 10.1016/j.geomorph.2004.07.010)
Baltsavias, EP, Favey, E, Bauder, A, Bösch, H and Pateraki, M (2001) Digital surface modelling by airborne laser scanning and digital photogrammetry for glacier monitoring. Photogramm. Rec., 17(98), 243273 (doi: 10.1111/0031-868X.00182)
Benn, DI and Ballatyne, CK (1993) The description and representation of particle shape. Earth Surf. Process. Landf., 18(7), 665672 (doi: 10.1002/esp.3290180709)
Bertin, S, Friedrich, H, Delmas, P, Chan, E and Gimel’farb, G (2014) DEM quality assessment with a 3D printed gravel bed applied to stereo photogrammetry. Photogramm. Rec., 29(146), 241264 (doi: 10.1111/phor.12061)
Black, M, Carbonneau, P, Church, M and Warburton, J (2014a) Mapping sub-pixel fluvial grain sizes with hyperspatial imagery. Sedimentology, 61(3), 691711 (doi: 10.1111/sed.12072)
Blott, SJ and Pye, K (2001) Gradistat: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Process. Landf., 26, 12371248 (doi: 10.1002/esp.261)
Boulton, GS (1978) Boulder shapes and grain size distribution of debris as indicators of transport paths through a glacier and till genesis. Sedimentology, 25(6), 773799 (doi: 10.1111/j.1365-3091.1978.tb00329.x)
Brasington, J, Vericat, D and Rychkov, I (2012) Modelling river bed morphology, roughness and surface sedimentology using high resolution Terrestrial Laser Scanning. Water Resour. Res., 48(11), W11519 (doi: 10.1029/2012WR012223)
Brodzikowski, K and Van Loon, AJ (1987) A systematic classification of glacial and periglacial environments, facies and deposits. Earth-Sci. Rev., 24(5), 297381 (doi: 10.1016/0012-8252(87)90061-4)
Bunte, K and Abt, SR (2001) Sampling surface and subsurface particle-size distributions in wadable gravel- and cobble-bed streams for analyses in sediment transport, hydraulics, and streambed monitoring. (General Technical Report RMRS-GTR-74) United States Department of Agriculture, Washington, DC
Buscombe, D (2008) Estimation of grain size distributions and associated parameters from digital images of sediment. Sediment. Geol., 210(1–2), 110 (doi: 10.1016/j.sedgeo.2008.06.007)
Buscombe, D (2013) Transferable wavelet method for grain-size distribution from images of sediment surface and thin sections, and other natural granular patterns. Sedimentology, 60, 17091732 (doi: 10.1111/sed.12049)
Buscombe, D and Masselink, G (2009) Grain size information from the statistical properties of digital images of sediment. Sedimentology, 56(2), 421438 (doi: 10.1111/j.1365-3091.2008.00977.x)
Buscombe, D, Rubin, DM and Warrick, JA (2010) A universal approximation of grain size from images of noncohesive sediment. J. Geophys. Res., 115, F02015 (doi: 10.1029/2009JF001477)
Butler, JB, Lane, SN and Chandler, JH (1998) Assessment of DEM quality for characterizing surface roughness using close range digital photogrammetry. Photogramm. Rec., 16(92), 271291 (doi: 10.1111/0031-868X.00126)
Butler, JB, Lane, SN and Chandler, JH (2001a) Automated extraction of grain size data from gravel surfaces using digital image processing. J. Hydraul. Res., 39(5), 519529 (doi: 10.1080/ 00221686.2001.9628276)
Butler, JB, Lane, SN and Chandler, JH (2001b) Characterization of the structure of river-bed gravels using two-dimensional fractal analysis. Math. Geol., 33(3), 301330 (doi: 10.1023/ A:1007686206695)
Carbonneau, P, Lane, S and Bergeron, NE (2004) Catchment-scale mapping of surface grain size in gravel bed rivers using airborne digital imagery. Water Resour. Res., 40(7), W07202 (doi: 10.1029/2003WR002759)
Carbonneau, PE, Bergeron, N and Lane, SN (2005) Automated grain size measurements from airborne remote sensing for long profile measurements of fluvial grain sizes. Water Resour. Res., 41, W11426 (doi: 10.1029/2005WR003994)
Chang, F-J and Chung, C-H (2012) Estimation of riverbed grain size distribution using image-processing techniques. J. Hydrol., 440–441, 102112 (doi: 10.1016/j.jhydrol.2012.03.032)
Cudden, JR and Hoey, TB (2003) The causes of bedload pulses in a gravel channel: the implications of bedload grain size distributions. Earth Surf. Process. Landf., 28(13), 14111428 (doi: 10.1002/esp.521)
Detert, M and Weitbrecht, V (2012) Automatic object detection to analyze the geometry of gravel grains – a free stand-alone tool. In Muñoz, REM ed. River flow 2012. CRC Press/Balkema, Leiden, 595600
Detert, M and Weitbrecht, V (2013) User guide to gravelometric image analysis by BASEGRAIN. In Fukuoka, S, Nakagawa, H, Sumi, T and Zhang, H eds Advances in river sediment research. CRC Press/Balkema, Leiden, 17891796
Diplas, P and Fripp, JB (1992) Properties of various sediment sampling procedures. J. Hydraul. Eng., 118(7), 955970 (doi: 10.1061/(ASCE)0733-9429(1992)118:7(955))
Dugdale, SJ, Carbonneau, PE and Campbell, D (2010) Aerial photo-sieving of exposed gravel bars for the rapid calibration of airborne grain size maps. Earth Surf. Process. Landf., 35(6), 627639 (doi: 10.1002/esp.1936)
Dunning, SA and 8 others (2013) The role of multiple glacier outburst floods in proglacial landscape evolution: the 2010 Eyjafjallajökull eruption, Iceland. Geology, 41(10), 11231136 (doi: 10.1130/G34665)
Eiken, T and Sund, M (2012) Photogrammetric methods applied to Svalbard glaciers: accuracies and challenges. Polar Res., 31, 18671 (doi: 10.3402/polar.v31i0.18671)
Evans, DJA, Livingstone, SJ, Vieli, A and Ó Cofaigh, C (2009) The palaeoglaciology of the central sector of the British and Irish Ice Sheet: reconciling glacial geomorphology and preliminary ice sheet modelling. Quat. Sci. Rev., 28, 739757 (doi: 10.1016/j.quascirev.2008.05.011)
Eyles, N and Rogerson, RJ (1978) Sedimentology of medial moraines on Berendon Glacier, British Columbia, Canada: implications for debris transport in a glacierized basin. Geol. Soc. Am. Bull., 89(11), 16881693 (doi: 10.1130/0016-7606(1978)89<1688: SOMMOB>2.0.CO;2)
Fehr, R (1986) A method for sampling very coarse sediments in order to reduce scale effects in movable bed models. In Larsen, AP ed. Proceedings of IAHR Symposium on Scale Effects in Modelling Sediment Transport Phenomena. Committee on Experimental Methods in Hydraulics and Fluids Mechanics, International Association of Hydraulic Engineering and Research, Madrid, 383397
Fischer, UH and Hubbard, B (1999) Subglacial sediment textures: character and evolution at Haut Glacier d’Arolla, Switzerland. Ann. Glaciol., 28(1), 241246 (doi: 10.3189/ 172756499781821977)
Fogwill, CJ, Hein, AS, Bentley, MJ and Sugden, DE (2012) Do blue-ice moraines in the Heritage Range show the West Antarctic ice sheet survived the last interglacial? Palaeogeogr., Palaeoclimatol., Palaeoecol., 335–336, 6170 (doi: 10.1016/j.palaeo.2011.01.027)
Friedman, GM and Sanders, JE (1978) Principles of sedimentology. Wiley, London
Fuller, WB and Thompson, SE (1907) The laws of proportioning concrete. Trans. Am. Soc. Civil Eng., 59, 67143
Furukawa, Y and Ponce, J (2007) Accurate, dense, and robust multi-view stereopsis. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 17–22 June 2007, Minneapolis, USA. Institute of Electrical and Electronics Engineers, Piscataway, NJ, 18
Furukawa, Y, Curless, B, Seitz, M and Szeliski, R (2010) Clustering view for multi-view stereo. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 13–18 June 2010, San Francisco, USA. Institute of Electrical and Electronics Engineers, Piscataway, NJ, 14341441
Graham, DJ, Reid, I and Rice, SP (2005a) Automated sizing of coarse-grained sediments: image-processing procedures. Math. Geol., 37(1), 128 (doi: 10.1007/s11004-005-8745-x)
Graham, DJ, Rice, SP and Reid, I (2005b) A transferable method for the automated grain sizing of river gravels. Water Resour. Res., 41(7), W07020 (doi: 10.1029/2004WR003868)
Graham, DJ, Rollet, A-J, Piégay, H and Rice, SP (2010) Maximizing the accuracy of image-based surface sediment sampling techniques. Water Resour. Res., 46, W02508 (doi: 10.1029/ 2008WR006940)
Haldorsen, S (1981) Grain size distribution of subglacial till and its relation to glacial crushing and abrasion. Boreas, 10(1), 91105 (doi: 10.1111/j.1502-3885.1981.tb00472.x)
Hambrey, MJ and Glasser, NF (2012) Discriminating glacier thermal and dynamic regimes in the sedimentary record. Sediment. Geol., 251–252, 133 (doi: 10.1016/j.sedgeo.2012.01.008)
Haubrock, S-N, Kuhnert, M, Chabrillat, S, Güntner, A and Kaufmann, H (2009) Spatiotemporal variations of soil surface roughness from in-situ laser scanning. Catena, 79(2), 128139 (doi: 10.1016/j.catena.2009.06.005)
Heritage, GL and Milan, DJ (2009) Terrestrial Laser Scanning of grain roughness in a gravel-bed river. Geomorphology, 113(1–2), 411 (doi: 10.1016/j.geomorph.2009.03.021)
Hodge, R, Brasington, J and Richards, K (2009a) In situ characterization of grain-scale fluvial morphology using Terrestrial Laser Scanning. Earth Surf. Process. Landf., 34, 954968 (doi: 10.1002/esp.780)
Hodge, R, Brasington, J and Richards, K (2009b) Analysing laser-scanned digital terrain models of gravel bed surfaces: linking morphology to sediment transport processes and hydraulics. Sedimentology, 56(7), 20242043 (doi: 10.1111/j.1365-3091.2009.01068.x)
Hooke, RLeB and Iverson, NR (1995) Grain size distribution in deforming subglacial tills: role of grain fracture. Geology, 23(1), 5760 (doi: 10.1130/0091-7613(1995)023<0057:GSDIDS>2.3.CO;2)
Ibbeken, H and Schleyer, R (1986) Photo-sieving: a method for grain size analysis of coarse-grained, unconsolidated bedding surfaces. Earth Surf. Process. Landf., 11, 5977 (doi: 10.1002/esp.3290110108)
Irvine-Fynn, T, Sanz-Ablanedo, E, Rutter, N, Smith, M and Chandler, J (2014) Measuring glacier surface roughness using plot-scale, close-range digital photogrammetry. J. Glaciol., 60(223), 957969 (doi: 10.3189/2014JoG14J032)
Iverson, NR, Hooyer, TS and Hooke, RLeB (1996) A laboratory study of sediment deformation: stress heterogeneity and grain-size evolution. Ann. Glaciol., 22, 167175.
James, MR and Quinton, JN (2013) Ultra-rapid topographic surveying for complex environments: the hand-held mobile laser scanner (HMLS). Earth Surf. Process. Landf., 39(1), 138142 (doi: 10.1002/esp.3489)
James, MR and Robson, S (2012) Straightforward reconstruction of 3-D surfaces and topography with a camera: accuracy and geoscience application. J. Geophys. Res., 117, F03017 (doi: 10.1029/2011JF002289)
James, MR and Robson, S (2014) Mitigating systematic error in topographic models derived from UAV and ground-based image networks. Earth Surf. Process. Landf., 39(10), 14131420 (doi: 10.1002/esp.3609)
Javernick, L, Brasington, J and Caruso, B (2014) Modeling the topography of shallow braided rivers using Structure-from-Motion photogrammetry. Geomorphology, 213, 166182 (doi: 10.1016/j.geomorph.2014.01.006)
Kääb, A (2010) Aerial photogrammetry in glacier studies. In Pellikka, P and Rees, WG eds Remote sensing of glaciers: techniques for topographic, spatial and thematic mapping of glaciers. CRC Press/Balkema, Leiden, 115136
Keutterling, A and Thomas, A (2006) Monitoring glacier elevation and volume changes with digital photogrammetry and GIS at Gepatschferner glacier, Austria. Int. J. Remote Sens., 27(19), 43714380 (doi: 10.1080/01431160600851819)
Knight, P, Patterson, CJ, Waller, RI, Jones, AP and Robinson, ZP (2000) Preservation of basal-ice sediment texture in ice-sheet moraines. Quat. Sci. Rev., 19(13), 1255-1258 (doi: 10.1016/S0277-3791(00)00091-3)
Lucieer, A, de Jong, S and Turner, D (2013) Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography. Progr. Phys. Geogr., 38(1), 97116 (doi: 10.1177/0309133313515293)
McLaren, P and Bowles, D (1985) The effects of sediment transport on grain size distributions. J. Sedim. Petrol., 55(4), 457470
Nicholson, L and Benn, DI (2012) Properties of natural supraglacial debris in relation to modelling sub-debris ice ablation. Earth Surf. Process. Landf., 38(5), 490501 (doi: 10.1002/esp.3299)
Nouwakpo, SK, James, MR, Weltz, MA, Huang, C-H, Chagas, I and Lima, L (2014) Evaluation of Structure from Motion for soil microtopography measurement. Photogramm. Rec., 29(147), 297316 (doi: 10.1111/phor.12072)
Passalacqua, P, Hiller, J and Tarolli, P (2014) Innovative analysis and use of high-resolution DTMs for quantitative interrogation of Earth-surface processes. Earth Surf. Process. Landf., 39(10), 14001403 (doi: 10.1002/esp.3616)
Passalacqua, P and 15 others (2015) Analyzing high resolution topography for advancing the understanding of mass and energy transfer through landscapes: a review. Earth-Sci. Rev., 148, 174193 (doi: 10.1016/j.earscirev.2015.05.012)
Pitkänen, T and Kajuutti, K (2004) Close-range photogrammetry as a tool in glacier change detection. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. (ISPRS), 35, 769773
Powers, MC (1953) A new roundness scale for sedimentary particles. J. Sedim. Petrol., 23(2), 117119.
Riegl Laser Measurement Systems (2010) LMS-Z620 data sheet. http://www.riegl.com [accessed 24 June 2015 ]
Rippin, DM, Pomfret, A and King, N (2015) High resolution mapping of supra-glacial drainage pathways reveals link between micro-channel drainage density, surface roughness and surface reflectance. Earth Surf. Process. Landf. (doi: 10.1002/esp.3719)
Rychkov, I, Brasington, J and Vericat, D (2012) Computational and methodological aspects of terrestrial surface analysis based on point clouds. Comput. Geosci., 42, 6470 (doi: 10.1016/j.cageo.2012.02.01)
Shaw, J (1987) Glacial sedimentary processes and environmental reconstruction based on lithofacies. Sedimentology, 34(1), 103116 (doi: 10.1111/j.1365-3091.1987.tb00563.x)
Shugar, DH and Clague, JJ (2011) The sedimentology and geomorphology of rock avalanche deposits on glaciers. Sedimentology, 58(7), 17621783 (doi: 10.1111/j.1365-3091.2011.01238.x)
Smith, MJ (2014) Roughness in the Earth Sciences. Earth-Sci. Rev., 136, 202225 (doi: 10.1016/j.earscirev.2014.05.016)
Smith, MJ and Vericat, D (2015) From experimental plots to experimental landscapes: topography, erosion and deposition in sub-humid badlands from Structure-from-Motion photogrammetry. Earth Surf. Process. Landf. (doi: 10.1002/esp.3747)
Snavely, N, Seitz, SN and Szeliski, R (2008) Modeling the world from internet photo collections. Int. J. Comput. Vis., 80, 189210 (doi: 10.1007/s11263-007-0107–3)
Sneed, ED and Folk, RL (1958) Pebbles in the lower Colorado River, Texas, a study of particle morphogenesis. J. Geol., 66(2), 114150.
Staines, KEH and 6 others (2014) A multi-dimensional analysis of pro-glacial landscape change at Sólheimajökull, southern Ice-land. Earth Surf. Process. Landf., 40(6), 809822 (doi: 10.1002/ esp.3662)
Stumpf, A, Malet, J-P, Allemand, P, Pierrot-Desilligny, M and Skupinski, G (2014) Ground-based multi-view photogrammetry for the monitoring of landslide deformation and erosion. Geomorphology, 231, 130145 (doi: 10.1016/j.geomorph.2014.10.039)
Sugden, DE, Fogwill, CJ, Hein, AS, Stuart, FM, Kerr, AR and Kubik, PW (2014) Emergence of the Shackleton Range from the beneath the Antarctic Ice Sheet due to glacial erosion. Geomorphology, 208, 190199 (doi: 10.1016/j.geomorph.2013.12.004)
Tamminga, AD, Eaton, BC and Hugenholtz, CH (2015) UAS-based remote sensing of fluvial change following an extreme flood event. Earth Surf. Process. Landf. (doi: 10.1002/esp.3728)
Tarolli, P (2014) High-resolution topography for understanding Earth surface processes: opportunities and challenges. Geomorphology, 216, 295312 (doi: 10.1016/j.geomorph.2014.03.008)
Van den Eeckhaut, M and 6 others (2005) Geomorphology, 67(3–4), 351363 (doi: 10.1016/j.geomorph.2004.11.001)
Verdu, JM, Batalla, RJ and Martinez-Casasnovas, JA (2005) High-resolution grain-size characterization of gravel bars using imagery analysis and geo-statistics. Geomorphology, 72, 7393 (doi: 10.1016/j.geomorph.2005.04.015)
Vieira, R, Hinata, S, da Rosa, KK, Zilberstein, S and Simoes, JC (2012) Periglacial features in Patriot Hills, Ellsworth Mountains, Antarctica. Geomorphology, 155–156, 96101 (doi: 10.1016/ j.geomorph.2011.12.014)
Westoby, MJ, Brasington, J, Glasser, NF, Hambrey, MJ and Reynolds, JM (2012) ‘Structure-from-Motion’ photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology, 179, 300314 (doi: 10.1016/j.geomorph.2012.08.021)
Whitehead, K, Moorman, B and Wainstein, P (2014) Measuring daily surface elevation and velocity variations across a polythermal arctic glacier using ground-based photogrammetry. J. Glaciol., 60(224), 12081220 (doi: 10.3189/2014JoG14J080)
Williams, RD, Brasington, J, Vericat, D and Hicks, DM (2014) Hyperscale terrain modelling of braided rivers: fusing mobile terrestrial laser scanning and optical bathymetric mapping. Earth Surf. Process. Landf., 39(2), 167183 (doi: 10.1002/esp.3437)
Williams, RD, Rennie, CD, Brasington, J, Hicks, DM and Vericat, D (2015) Linking the spatial distribution of bed load transport to morphological change during high-flow events in a shallow braided river. J. Geophys. Res.: Earth Surf., 120(3), 604622 (doi: 10.1002/2014JF003346)

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed