Skip to main content Accessibility help

Response of the flow dynamics of Bowdoin Glacier, northwestern Greenland, to basal lubrication and tidal forcing

  • HAKIME SEDDIK (a1), RALF GREVE (a1), DAIKI SAKAKIBARA (a1) (a2), SHUN TSUTAKI (a1) (a3) (a4), MASAHIRO MINOWA (a1) (a5) and SHIN SUGIYAMA (a1)...


We use the full-Stokes model Elmer/Ice to investigate the present dynamics of Bowdoin Glacier, a marine-terminating outlet glacier in northwestern Greenland. Short-term speed variations of the glacier were observed, correlating with air temperature and precipitation, and with the semi-diurnal ocean tides. We use a control inverse method to determine the distribution of basal friction. This reveals that most of the glacier area is characterized by near-plug-flow conditions, while some sticky spots are also identified. We then conduct experiments to test the sensitivity of the glacier flow to basal lubrication and tidal forcing at the calving front. Reduction of the basal drag by 10–40% produces speed-ups that agree approximately with the observed range of speed-ups that result from warm weather and precipitation events. In agreement with the observations, tidal forcing and surface speed near the calving front are found to be in anti-phase (high tide corresponds to low speed, and vice versa). However, the amplitude of the semi-diurnal variability is underpredicted by a factor ~ 3, which is likely related to either inaccuracies in the surface and bedrock topographies or mechanical weakening due to crevassing.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Response of the flow dynamics of Bowdoin Glacier, northwestern Greenland, to basal lubrication and tidal forcing
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Response of the flow dynamics of Bowdoin Glacier, northwestern Greenland, to basal lubrication and tidal forcing
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Response of the flow dynamics of Bowdoin Glacier, northwestern Greenland, to basal lubrication and tidal forcing
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence: Ralf Greve <>


Hide All
Amestoy, PR, Duff, IS, Koster, J and L'Excellent, JY (2001) A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl., 23(1), 1541 (doi: 10.1137/S0895479899358194)
Amestoy, PR, Guermouche, A, L'Excellent, JY and Pralet, S (2006) Hybrid scheduling for the parallel solution of linear systems. Parallel Comput., 32(2), 136156 (doi: 10.1016/j.parco.2005.07.004)
Bamber, JL and 10 others (2013) A new bed elevation dataset for Greenland. Cryosphere, 7(2), 499510 (doi: 10.5194/tc-7-499-2013)
Blatter, H, Greve, R and Abe-Ouchi, A (2011) Present state and prospects of ice sheet and glacier modelling. Surv. Geophys., 32(4–5), 555583 (doi: 10.1007/s10712-011-9128-0)
Choi, Y, Morlighem, M, Rignot, E, Mouginot, J and Wood, M (2017) Modeling the response of Nioghalvfjerdsfjorden and Zachariae Isstrøm Glaciers, Greenland, to ocean forcing over the next century. Geophys. Res. Lett., 44(21), 1107111079 (doi: 10.1002/2017GL075174)
Christmann, J, Plate, C, Müller, R and Humbert, A (2016a) Viscous and viscoelastic stress states at the calving front of Antarctic ice shelves. Ann. Glaciol., 57(73), 1018 (doi: 10.1017/aog.2016.18)
Christmann, J, Rückamp, M, Müller, R and Humbert, A (2016b) Discussion of different model approaches for the flow behavior of ice. Proc. Appl. Math. Mech., 16(1), 313314 (doi: 10.1002/pamm.201610145)
Cuffey, KM and Paterson, WSB (2010) The physics of glaciers, 4th edn. Elsevier, Amsterdam, The Netherlands etc. ISBN 978-0-12-369461-4
Enderlin, EM and 5 others (2014) An improved mass budget for the Greenland ice sheet. Geophys. Res. Lett., 41(3), 866872 (doi: 10.1002/2013GL059010)
Franca, LP and Frey, SL (1992) Stabilized finite elements methods: II. The incompressible Navier-Stokes equations. Comp. Meths. Appl. Mech. Engrg., 99(2–3), 209233 (doi: 10.1016/0045-7825(92)90041-H)
Franca, LP, Frey, SL and Hughes, TJR (1992) Stabilized finite elements methods: I. Application to the advective-diffusive model. Comp. Meths. Appl. Mech. Engrg., 95(2), 253276 (doi: 10.1016/0045-7825(92)90143-8)
Gagliardini, O and 14 others (2013) Capabilities and performance of Elmer/Ice, a new-generation ice sheet model. Geosci. Model Dev., 6(4), 12991318 (doi: 10.5194/gmd-6-1299-2013)
Gilbert, JC and Lemaréchal, C (1989) Some numerical experiments with variable-storage quasi-Newton algorithms. Math. Prog., 45(1–3), 407435 (doi: 10.1007/BF01589113)
Gillet-Chaulet, F and 8 others (2012) Greenland ice sheet contribution to sea-level rise from a new-generation ice-sheet model. Cryosphere, 6(6), 15611576 (doi: 10.5194/tc-6-1561-2012)
Gladstone, RM and 5 others (2017) Marine ice sheet model performance depends on basal sliding physics and sub-shelf melting. Cryosphere, 11(1), 319329 (doi: 10.5194/tc-11-319-2017)
Gogineni, S and 9 others (2001) Coherent radar ice thickness measurements over the Greenland ice sheet. J. Geophys. Res. Atmos., 106(D24), 3376133772 (doi: 10.1029/2001JD900183) EDBK
Hansen, P (2001) The L-curve and its use in the numerical treatment of inverse problems. In Johnston, PR ed. Computational inverse problems in electrocardiology, Advances in Computational Bioengineering No. 5. WIT Press, Southampton, 119142, ISBN 978-1-85312-614-7
Holland, DM, Thomas, RH, de Young, B, Ribergaard, MH and Lyberth, B (2008) Acceleration of Jakobshavn Isbrætriggered by warm surface ocean waters. Nat. Geosci., 1(10), 659664 (doi: 10.1038/ngeo316)
Howat, IM, Joughin, I, Tulaczyk, S and Gogineni, S (2005) Rapid retreat and acceleration of Helheim Glacier, East Greenland. Geophys. Res. Lett., 32(22), L22502 (doi: 10.1029/2005GL024737)
Howat, IM, Joughin, I and Scambos, TA (2007) Rapid changes in ice discharge from Greenland outlet glaciers. Science, 315(5818), 15591561 (doi: 10.1126/science.1138478)
Joughin, I, Abdalati, W and Fahnestock, M (2004) Large fluctuations in speed on Greenland's Jakobshavn Isbrae glacier. Nature, 432(7017), 608610 (doi: 10.1038/nature03130)
Jouvet, G, Picasso, M, Rappaz, J, Huss, M and Funk, M (2011) Modelling and numerical simulation of the dynamics of glaciers including local damage effects. Math. Model. Nat. Phenom., 6(5), 263280 (doi: 10.1051/mmnp/20116510)
Jouvet, G and 7 others (2017) Initiation of a major calving event on the Bowdoin Glacier captured by UAV photogrammetry. Cryosphere, 11(2), 911921 (doi: 10.5194/tc-11-911-2017)
Jouvet, G and 6 others (2018) Short-lived ice speed-up and plume water flow captured by a VTOL UAV give insights into subglacial hydrological system of Bowdoin Glacier. Remote Sens. Environ., 217, 389399 (doi: 10.1016/j.rse.2018.08.027)
Khan, SA and 12 others (2014) Sustained mass loss of the northeast Greenland ice sheet triggered by regional warning. Nat. Clim. Change, 4(4), 292299 (doi: 10.1038/nclimate2161)
Khan, SA and 5 others (2015) Greenland ice sheet mass balance: a review. Rep. Prog. Phys., 78(4), 046801 (doi: 10.1088/0034-4885/78/4/046801)
Kjær, KH and 13 others (2012) Aerial photographs reveal late-20th-century dynamic ice loss in northwestern Greenland. Science, 337(6094), 569573 (doi: 10.1126/science.1220614)
Krug, J, Weiss, J, Gagliardini, O and Durand, G (2014) Combining damage and fracture mechanics to model calving. Cryosphere, 8(6), 21012117 (doi: 10.5194/tc-8-2101-2014)
Krug, J, Durand, G, Gagliardini, O and Weiss, J (2015) Modelling the impact of submarine frontal melting and ice mélange on glacier dynamics. Cryosphere, 9(3), 9891003 (doi: 10.5194/tc-9-989-2015)
Larour, E and 8 others (2014) Inferred basal friction and surface mass balance of the Northeast Greenland Ice Stream using data assimilation of ICESat (Ice Cloud and land Elevation Satellite) surface altimetry and ISSM (Ice Sheet System Model). Cryosphere, 8(6), 23352351 (doi: 10.5194/tc-8-2335-2014)
MacAyeal, DR (1993) A tutorial of the use of control methods in ice-sheet modeling. J. Glaciol., 39(131), 9198 (doi: 10.3189/S0022143000015744)
Mankoff, KD and 5 others (2016) Structure and dynamics of a subglacial discharge plume in a Greenlandic fjord. J. Geophys. Res. Solid Oceans, 121(12), 86708688 (doi: 10.1002/2016JC011764)
McFadden, EM, Howat, IM, Joughin, I, Smith, BE and Ahn, Y (2011) Changes in the dynamics of marine terminating outlet glaciers in west Greenland (2000–2009). J. Geophys. Res. Earth Surf., 116(F2), F02022 (doi: 10.1029/2010JF001757)
Moon, T, Joughin, I, Smith, B and Howat, I (2012) 21st-century evolution of Greenland outlet glaciers velocities. Science, 336(6081), 576578 (doi: 10.1126/science.1219985)
Morlighem, M and 5 others (2010) Spatial patterns of basal drag inferred using control methods from a full-Stokes and simpler models for Pine Island Glacier, West Antarctica. Geophys. Res. Lett., 37(14), L14502 (doi: 10.1029/2010GL043853)
Mouginot, J and 7 others (2015) Fast retreat of ZachariæIsstrøm, northeast Greenland. Science, 350(6266), 13571361 (doi: 10.1126/science.aac7111)
Nettles, M and 12 others (2008) Step-wise changes in glacier flow speed coincide with calving and glacial earthquakes at Helheim Glacier, Greenland. Geophys. Res. Lett., 35(24), L24503 (doi: 10.1029/2008GL036127)
Nick, FM, Vieli, A, Howat, IM and Joughin, I (2009) Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nat. Geosci., 2(2), 110114 (doi: 10.1038/ngeo394)
Nick, FM and 7 others (2013) Future sea-level rise from Greenland's main outlet glaciers in a warming climate. Nature, 497(7448), 235238 (doi: 10.1038/nature12068)
Podrasky, D and 5 others (2012) Outlet glacier response to forcing over hourly to interannual timescales, Jakobshavn Isbræ, Greenland. J. Glaciol., 58(212), 12121226 (doi: 10.3189/2012JoG12J065)
Rignot, E and Kanagaratnam, P (2006) Changes in the velocity structure of the Greenland ice sheet. Science, 311(5763), 986990 (doi: 10.1126/science.1121381)
Rignot, E and 12 others (2016) Modeling of ocean-induced ice melt rates of five west Greenland glaciers over the past two decades. Geophys. Res. Lett., 43(12), 63746382 (doi: 10.1002/2016GL068784)
Sakakibara, D and Sugiyama, S (2018) Ice front and flow speed variations of marine-terminating outlet glaciers along the coast of Prudhoe Land, northwestern Greenland. J. Glaciol., 64(244), 300310 (doi: 10.1017/jog.2018.20)
Sasgen, I and 8 others (2012) Timing and origin of recent regional ice-mass loss in Greenland. Earth Planet. Sci. Lett., 333–334, 293303 (doi: 10.1016/j.epsl.2012.03.033)
Schlegel, NJ, Larour, E, Seroussi, H, Morlighem, M and Box, JE (2015) Ice discharge uncertainties in Northeast Greenland from boundary conditions and climate forcing of an ice flow model. J. Geophys. Res. Earth Surf., 120(1), 2954 (doi: 10.1002/2014JF003359)
Schoof, C (2007) Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J. Geophys. Res. Earth Surf., 112(F3), F03S28 (doi: 10.1029/2006JF000664)
Seddik, H, Greve, R, Zwinger, T and Sugiyama, S (2017) Regional modeling of the Shirase drainage basin, East Antarctica: full stokes vs. shallow ice dynamics. Cryosphere, 11(5), 22132229 (doi: 10.5194/tc-11-2213-2017)
Straneo, F and Heimbach, P (2013) North Atlantic warming and the retreat of Greenland's outlet glaciers. Nature, 504(7478), 3643 (doi: 10.1038/nature12854)
Sugiyama, S and 5 others (2014) Initial field observations on Qaanaaq ice cap, northwestern Greenland. Ann. Glaciol., 55(66), 2533 (doi: 10.3189/2014AoG66A102)
Sugiyama, S, Sakakibara, D, Tsutaki, S, Maruyama, M and Sawagaki, T (2015) Glacier dynamics near the calving front of Bowdoin Glacier, northwestern Greenland. J. Glaciol., 61(226), 223232 (doi: 10.3189/2015JoG14J12)
Sugiyama, S and 9 others (2017) Recent ice mass loss in northwestern Greenland: results of the GRENE Greenland project and overview of the ArCS project. Low Temp. Sci., 75, 113 (doi: 10.14943/lowtemsci.75.1)
Thomas, RH and 8 others (2000) Substantial thinning of a major east Greenland outlet glacier. Geophys. Res. Lett., 27(9), 12911294 (doi: 10.1029/1999GL008473)
Todd, J and Christoffersen, P (2014) Are seasonal calving dynamics forced by buttressing from ice mélange or undercutting by melting? Outcomes from full-Stokes simulations of Store Glacier, West Greenland. Cryosphere, 8(6), 23532365 (doi: 10.5194/tc-8-2353-2014)
Todd, J and 10 others (2018) A full-Stokes 3-D calving model applied to a large Greenlandic glacier. J. Geophys. Res. Earth Surf., 123(3), 410432 (doi: 10.1002/2017JF004349)
Tsutaki, S, Sugiyama, S, Sakakibara, D and Sawagaki, T (2016) Surface elevation changes during 2007–13 on Bowdoin and Tugto Glaciers, northwestern Greenland. J. Glaciol., 62(236), 10831092 (doi: 10.1017/jog.2016.106)
Van der Veen, CJ, Plummer, JC and Stearns, LA (2011) Controls on the recent speed-up of Jakobshavn Isbræ, West Greenland. J. Glaciol., 57(204), 770782 (doi: 10.3189/002214311797409776)
Vaughan, DG and 13 others (2013) Observations: cryosphere. In Stocker, TF, Qin, D, Plattner, GK, Tignor, M, Allen, SK, Boschung, J, Nauels, A, Xia, Y, Bex, V and Midgley, PM (eds.), Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, and New York, NY, USA, 317382.
Vieli, A and Nick, FM (2011) Understanding and modelling rapid dynamic changes of tidewater outlet glaciers: Issues and implications. Surv. Geophys., 32(4–5), 437458 (doi: 10.1007/s10712-011-9132-4)
Zwinger, T, Greve, R, Gagliardini, O, Shiraiwa, T and Lyly, M (2007) A full Stokes-flow thermo-mechanical model for firn and ice applied to the Gorshkov crater glacier, Kamchatka. Ann. Glaciol., 45, 2937 (doi: 10.3189/172756407782282543)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed