Skip to main content Accessibility help
×
Home

Pore-water controlled grain fracturing as an indicator for subglacial shearing in tills

  • John F. Hiemstra (a1) and Jaap J. M. Van Der Meer (a1)

Abstract

Genetic classification of glacial deposits still proves to be highly controversial. In many cases, it remains unclear whether a particular sediment has been sub-glacially deformed. In the present paper it is suggested that micromorphological research is helpful where current techniques fail to lead to unambiguous interpretations. It is argued that the occurrence of fractured grains in glacial sediments is indicative of subglacial shearing and that such grains may be used as diagnostic evidence of glaciotectonism. Deformational mechanisms associated with the fracturing process are outlined and explained, using a series of thin sections from Wijnjewoude, The Netherlands.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Pore-water controlled grain fracturing as an indicator for subglacial shearing in tills
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Pore-water controlled grain fracturing as an indicator for subglacial shearing in tills
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Pore-water controlled grain fracturing as an indicator for subglacial shearing in tills
      Available formats
      ×

Copyright

References

Hide All
Alley,, R. В. 1989a. Water-pressure coupling of sliding and bed deformation: I. Water system. J. Glaciol., 35(119), 108118.
Alley,, R. B. 1989b. Water-pressure coupling of sliding and bed deformation: II. Velocity-depth profiles. J. Glaciol., 35(119), 119129.
Alley,, R.B. Blankenship,, D. D., Bentley,, C. R. and Rooney,, S.T. 1987. Till beneath Ice Stream B. 3. Till deformation: evidence and implications. J. Geophys. Res., 92(B9), 89218929.
Benn,, D. I. and Evans,, D. J. A. 1996. The interpretation and classification of subglacially-deformed materials. Quat. Sci. Rev., 15(1), 2352.
Bordonau,, J. and van der Meer., J. J. M. 1994. An example of a kinking microfabric in Upper Pleistocene glaciolacustrine deposits from Llavorsi (central southern Pyrences, Spain). Geol Mijnbouw., 73(1), 2330.
Boulton,, G. S. 1979. Processes of glacier erosion on different substrata. J. Glaciol., 23(89), 1538.
Boulton,, G. S. 1987. A theory of drumlin formation by subglacial sediment deformation. In. Menzies,, J. and Rose., J. eds. Drumlin Symposium. Rotterdam, A.A. Balkema, 2580.
Boulton,, G. S. 1996. Theory of glacial erosion, transport and deposition as a consequence of subglacial sediment deformation. J. Glaciol., 42(l40), 4362.
Boulton,, G. S. and Dobbie,, K. E. 1993. Consolidaiion of sediments by glaciers: relations between sediment geoteehnies, soft-bed glacier dynamics and subglacial ground-water flow. J. Glaciol., 39(131), 2614.
Boulton,, G. S. and Hindmarsh,, R. C. A., 1987. Sediment deformation beneath glaciers: rheology and geological consequences. J. Geophys. Res., 92(B9), 90599082.
Boulton,, G. S., Dent, D. L. and Morris,, E. M. 1974. Subglacial shearing and crushing, and the role of water pressures in tills from south-east Iceland. Geogr. Ann., 56A(34), 135115.
Brewer,, R. 1976. Fabric and mineral analysis of soils. Huntington, Krieger.
Brzesowsky,, R. H. 1995. Micromechanics of sand grain failure and sand rompihlion. (Ph.D. thesis, Universiteit Utrecht.)
Dreimanis,, A. 1989. Tills: their genetic terminology and classificaiion. In. Goldthwait,, R.P. and Matsch,, C. L., eds. Genetie classification of glacigenic deposits. Rotterdam, Balkema,A. A., 1783.
Drewry,, D.J. and Cooper,, A. P. R. 1981. Processes and model of Antarctic glaciomarine sedimentation. Ann. Glaciol., 2, 117122.
Eyles,, C. H., Eyles,, N. and Miall,, A. D. 1985. Models of glaciomarine sedimentation and their application to the interpretation of ancient glacial sequences. Palaeogeogr., Palaeoclimatol., Palaeoecol., 51 (1–4), 1584.
Haldorsen,, S. 1981. Grain-size distribution of subglacial till and its relation to glacial crushing and abrasion. Boreas, 10(1), 91105.
Ham,, N. R. and Mickelson,, D. M. 1995. Micromorphology of basal till, Burroughs Glacier, Alaska. In. Engstrom,, D.R., ed. Proeedings of the Third Glacier Bay Science Symposium. Anchorage. AK, U.S. Depanment of the Interior. National Park Service, 8286.
Hart,, J. K. and Roberts,, D.H. 1994. Criteria to distinguish between subglacial glaciotectonic and glaciomarine sedimentation. I. Deformation styles and sedimeutology. Sediment. Geol., 91(14), 191213.
Hiemstra,, J. F., Zaniewski,, K. and van der Meer., J. J. M. 1996. Extent of the grounded Antarctic ice sheet in space and time. Cirumpolar J., 11(1–2), 7274.
Höfle,, H. -C. 1983. Strekturmessungen und Geschiebeanalysen an eiszeitlichen Ablagerungen auf der Osterholz-Scharmbecker Geest. Abh. Naturwiss. Ver. Bremen. 40, 3953.
Hooke,, R. LeB and Iverson,, N. R. 1995. Grain-size distribution in deforming subglacial tills: role of grain fracture. Geology, 23(1), 5760.
Iverson,, N. R., Hooyer,, T. and Hooke., S. 1996. A laboratory study of sediment deformation: stress heterogeneity and grain-size evolution. Ann. Glaciol., 22, 167175.
Johnson,, K. L. 1985. contact mechanics. Cambridge, Cambridge University Press.
Mahaney,, W. C., Vortisch,, W. and Julig., P. 1988. Relative differences between glacially crushed quartz transported by mountain and continental ice—some examples from North America and East Africa. Am. J. Sci., 288(8), 810826.
May,, R.W. 1980. The formation and significance of irregularly shaped quartz grains in till. Sedimentology, 27(3), 325331.
Menéndez., В., Zhu, W. and Wong., T. -F. 1996. Micromechanics of brittle faulting and cataclastic flow in Berea sandstone. J. Struct. Geol., 18(1), 116.
Menzies,, J. and Maltman,, A.J. 1992. Microstructures in diamictons — evidence of subglacial bed conditions. Geomorphology, 6(l), 2740.
Menzies,, J. and Shilts,, W. W. 1996. Subglacial environments. In. Menzies., J., ed. Past glticial environments — sediments, forms and techniques. Vol. 2. Glacial environments. Oxford, etc. Butterrworth-Heincmann, 15136.
Morgenstern,, N. R. and Tchalenko,, J. S. 1967. Microscopic structures in kaolinite subjected to direct shear. Géotechnique, 17, 309328.
Morrow,, C. A. and Byerlee,, J. D. 1989. Experimental studies of compaction and dilatancy during frictional sliding on faults containing gouge. J. Struct. Geol., 11(7), 815825.
Murphy,, C. P. 1986. Thin section preparation of soils and sediments. Berkhamstead, AB Academic.
Murray,, T. and Dowdeswell,, J. A. 1992. Water throughflow and the physical effects of deformation on sedimentary glacier beds. J. Geophys. Res., 97(B6), 89939002.
Rajlich,, P. 1993. Riedel shear: a mechanism for crenuhuion cleavage, Earth Sci. Rev., 34, 167195.
Ramsay,, J. G. 1980. Shear zone geomelry: a review. J. Struct. Geol., 2(1), 8399.
Rappol,, M., Haldorsen,, S., Jørgensen,, P. van der Meer, J. J. M. and Steltenberg., H. M. P. 1989. Composition and origin of petrographically-stratified thick till in the northern Netherlands and a Saalian glaciation model for the North Sea basin. Mededelingen Werkgroep Tertiair en Kwartair Geologie. 26, 3164.
Sammis,, С., King,, G. and Biegel,, R. 1987. The kinematics of gouge deformation. Pure Appl. Geophys., 125(5), 777812.
Solheim,, A. 1991. The depositional environment of surging sub-polar tide-waler glaciers: a case study of the morphology, sedimentation and sediment properties in a surge-affected marine basin outside Nordatistlandct, northern Barents Sea. Nor. Polarinst. Skr. 194.
Van der Meer,, J. J. M. 1987. Micromorphology of glacial sediments as a tool in distinguishing genetic varieties of till. In. Kujansuu,, R, and Saarnisto,, M., eds. INQUA Till Symposium, Finlaiid 1985. Espoo, Geological Sociely of Finland, 7789. (Special Paper 3.)
Van der Meer,, J. J. M. 1993. Microscopic evidence of subglacial deformation. Quat. Sci. Rev., 12(7), 553587.
Van der Meer,, J. J. M. 1996. Micromorphology. In. Menzies,, J., ed. Past glacial enironments. sediments - forms and techniques. Vol. 2. Glacial environments. Oxford, etc. Butterworth-Heinemann, 335355.
Van der Meer,, J. J. M., Rappol,, M. and Semeyn,, J. N. 1983. Mieromorphological and preliminary X-ray observations on a basal till from Lunteren, The Netherlands. Acta Geol. Hisp., 18, 199205.
Whalley,, W. B. and Krinsley,, D. H. 1974. A scanning electron microscope study of surface textures of quartz grains from glacial environments, Sedimentology, 21, 87105.
Zhang,, J., Wong, T.-E and Davis,, D. M. 1990. Micromechanics of pressure-induced grain crushing in porous rock. J. Geophys. Res., 95(B1), 341352.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed