Skip to main content Accessibility help
×
×
Home

The Optical Properties of Ice and Snow in the Arctic Basin *

  • Thomas C. Grenfell (a1) and Gary A. Maykut (a1)

Abstract

Measurements of light transmission and reflection were carried out on first-year sea ice near Point Barrow, Alaska, and on multi-year ice near Fletcher’s Ice Island in the Beaufort Sea (lat. 84° N., long. 77°W.). Spectral albedos (400-1 000 nm) and extinction coefficients (400-800 nm) were determined for melt ponds, snow, and various types of bare ice. Albedos were largest in the 400-600 nm range, decreasing toward longer wavelengths at a rate which appeared to be related to the liquid-water content of the near-surface layers. Extinction coefficients remained nearly constant between 400 and 550 nm, but increased rapidly above 600 nm. At 500 nm, albedos ranged from 0.25 over mature melt ponds to 0.93 over dense dry snow, while the corresponding extinction coefficients ranged from 0.6 to 16 m-1. Intensity profiles taken in the upper 50 cm of the ice indicated that the extinction coefficient at a particular wavelength was nearly constant with depth below 15 cm, although the bulk extinction coefficient decreased with depth because of the strong attenuation in the red. Near the surface it was found that multi-year ice absorbed slightly more energy than did first-year blue ice, but at depths below 10 cm the flux divergence in the first-year ice was three to four times larger than that in the multi-year ice. A simple procedure is described for estimating light transmission and absorption within the ice under clear or cloudy skies from total flux measurements at the surface. Methods by which satellite data could be used to estimate regional albedos, melt-pond fraction, and lead area are also presented.

Résumé

On a procédé à des mesures de transmission et de réflexion de la lumiere dans de la glace de mer de première année près de Point Barrow en Alaska et dans de la glace pluriannuelle à Fletcher’s Ice Island dans la Mer de Beaufort (84° N., 77° W.). Les albédos en fonction de la longueur d’onde (entre 400 et 1 000 nm) et les coefficients d’extinction (entre 400 et 800 nm) ont été déterminés pour des flaques en cours de fusion, pour de la neige et pour différents types de glace nue. Les albédos sont les plus forts pour la plage 400-600 nm, diminuent pour les longueurs d’onde plus grander. à une vitesse qui semble étre liée à la teneur en eau liquide des niveaux superficiels. Les coefficients d’extinction restent presque constants entre 400 et 500 nm mais croissent rapidement audessus de 600 nm. A 500 nm, les albédos s’échelonnent entre 0,25 sur des flaques de fusion mares, à 0,93 au-dessus de la neige sèche dense, tandis que les coefficients d’extinction correspondants varient de 0,6 à 16 m-1. Les profils d’intensité pris dans les 50 cm supérieurs de la glace indiquent que le coefficient d’extinction à une longueur d’onde particuliere était à peu près constant avec la profondeur en-dessous de 15 cm, bien que le coefficient global d’extinction décroisse avec la profondeur à cause d’une très forte atténuation dans le rouge. Près de in surface, on a trouvé que la glace multiannuelle absorbe un peu plus d’énergie que la glace bleue de première année, mais à des profondeurs supérieures à 10 cm la divergence du flux dans la glace de première année est trois ou quatre fois plus forte que dans la glace pluriannuelle. On décrit un procédé simple pour estimer la transmission et l’absorption de la lumière à l’intérieur de la glace, sous des ciels clairs ou nuageux à partir de mesures du flux total a la surface. On présente aussi des méthodes pour utiliser les données recueillics par les satellites en vue d’estimer à l’échelle de la région l’albédo, l’avancement de la fusion et la zone de drainage.

Zusammenfassung

Messungen der Lichtdurchlässigkeit und Reflexion wurden an einjährigem Meereis bei Point Barrow, Alaska, und an mehrjährigem Eis bei Fletchers Eisinsel in der Beaufort-See (84° N., 77° W.) durchgeführt. In Schmelzwannen, für Schnee und verschiedene Arten blanken Eises wurde die spektrale Albedo (400—1 000 nm) und der Extinktionskoeffizient (400-800 nm) bestimmt. Die grössten Albedowerte lagen im 400-600 nm-Bereich; ihre Abnahme mit grösseren Wellenlängen scheint in Beziehung zum Gehalt an flüssigem Wasser in den oberflächennahen Schichten zu stchcn. Der Extinktionskoeffizient blieb zwischen 400 und 550 mn annähernd konstant, nahm über üher 600 nm ranch zu. Bei 500 nm reichte die Albedo von 0,25 Für reife Schmelzwannen bis 0,93 über dichtem trockcnem Schnee, während die zugehörigen Extinktionskoeffizienten zwischen o,6 bis 16 m-1 lagen. Intensitätsprofile in den obersten 50 cm des Eises zeigten, dass der Ex tinktionskoeffizient für eine bestimmte Wellenlänge far Tiefen unter 15 cm nahezu konstant blieb, obwohl der Gesamt-Extinktionskoeffizient infolge der starken Abschwächung im Roten mit der Tiefe abnahm. In Oberflächennähe ergab sich, dass die Energieabsorption mehrjährigen Eises etwas hölier war als die einjährigen Blaueises, aber in Tiefen unter 10 cm betrug die Flussdivergenz in einjährigem Eis das 3-4-fache von der in mehrjährigem Eis. Zur Abschätzung der Liehtdurchlässigkeit und Absorption im Eis unter klarem oder wolkigem Himmel aus Messungen des Gesamtflusses an der Oberfläche wird ein einfaches Verfahren beschrieben. Methoden zur Abschätzung der regionalen Albedo, des Anteils der Schmelzwannen und Rinnenfläche aus Satellitendaten werden ebenfalls angegeben.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The Optical Properties of Ice and Snow in the Arctic Basin *
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The Optical Properties of Ice and Snow in the Arctic Basin *
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The Optical Properties of Ice and Snow in the Arctic Basin *
      Available formats
      ×

Copyright

Footnotes

Hide All
*

Contribution 406, Department of Atmospheric Sciences, University of Washington.

Footnotes

References

Hide All
Ambach, W., and Awecker, P. 1967. Zur Lichtstreuung im Gletschereis. Archie fur Meteorologic, Geophysik Bioklimatologie, Ser. B, Bd. 15, Ht. 12, p. 17585.
Bryazgin, N. N., and Koptev, A. P. 1969. O spektral’nom al’bedo snezhno-ledyanogo pokrova [Spectral albedo of snow–ice cover]. Problemy Arktiki i Antarktiki, Vyp. 31, p. 7983.
Buzuyev, A. Ya., and others. 1965. Al’bedo l’da v arkticheskikh moryakh po dannym nablyudenii s samoleta [Albedo of ice in the Arctic seas according to data from aircraft observations]. [By] Buzuyev, A. Ya., Shestirikov, N. P., Timerev, A. A.. Problem, Arktiki i Antarktiki, Vyp. 20, P. 4954.
Chernigovskiy, N. T. 1963. Radiatsionnyye svoystva ledyanogo pokrova tsentral’noy Arktiki [Radiational properties of the central Arctic ice cover]. Trudy Arkticheskogo i Antarkticheskogo Nauchno-Issledovatel’skogo Instituta, Tom 253, p. 24960.
Davis, H. T., and Munis, R. H. 1973. Effect of salinity on the optical extinction of sea ice at 6328 Å. U.S. Cold Regions Research and Engineering Laboratory. Research Report 308.
Dunkle, R. V., and Bevans, J. T. 1956. An approximate analysis of the solar reflectance and transmittance of a snow cover. Journal of Meteorology, Vol. 13, No. 2, p. 21216.
Cast, P. R. 1960. Solar radiation. (In Campen, C. F., and others, ed. Handbook of geophysics. Edited by Campen, C. F. [and 5 others]. New York, Macmillan, p. 1614-1632.)
Hanson, K. J. 1961. The albedo of sea-ice and ice islands in the Arctic Ocean basin. Arctic, Vol. 14, No. 3, p. 18896.
Jaffe, A. 1960. Über Strahlungseigenschaften des Gletschereises. Archiv fÜr Meteorologic, Geophysik und Bioklimatologie, Ser. B, Bd. 10, Ht. 3, p. 37695.
Kondratyev, K. Ya. 1969. Radiation in the atmosphere. New York, Academic Press. (International Geophysics Series.)
Lane, J. W. 1975. Optical properties of salt ice. Journal of Glaciology, Vol. 15, No. 73, p. 36372.
Langleben, M. P. 1968. Albedo measurements of an Arctic ice cover from high towers. Journal of Glaciology, Vol. 7, No. 50, p. 28997.
Langleben, M. P. 1969. Albedo and degree of puddling of a melting cover of sea ice. Journal of Glaciology, Vol. 8, No. 54, p. 40712.
Langleben, M. P. 1971. Albedo of melting sea ice in the southern Beaufort Sea. Journal of Glaciology, Vol. 10, No. 58, p. 10104.
Liljequist, G. H. 1956. Energy exchange of an Antarctic snow-field. Short-wave radiation (Maudheim, 71° 03’ S., 10° 56’ W.). Norwegian-British-Swedish Antarctic Expedition, 1949–52. Scientific Results, VOL 2, Pt. 1A.
McClatchey, R. A., and others. 1971. Optical properties of the atmosphere, by R. A. McClatchey [and 4 others].
U.S. Air Force. Cambridge Research Laboratories. Environmental Research Paper No. 354.
Marshunova, M. S. 1961. Osnovnyye zakonomernosti radiatsionnogo balansa podstilayushchey poverkhnosti i atmosfery v Arktike [Principal characteristics of the radiation balance of the underlying surface and of the atmosphere in the Arctic]. Trudy Arkticheskogo i Antarkticheskogo Nauchno-Issledovater’skogo Instituta, Tom 229, P. 553.
Maykut, G. A., and Grenfell, T. C. 1975. The spectral distribution of light beneath first-year sea ice in the Arctic Ocean. Limnology and Oceanography, VOL 20, No. 4, p. 55463.
Mellor, M. 1965. Optical measurements on snow. U.S. Cold Regions Research and Engineering Laboratory. Research Report 169.
Roulet, R. R., and others. 1974. Spectrophotometers for the measurement of light in polar ice and snow, by Roulet, R. R., Maykut, G. A. and Grenfell, T. C.. Applied Optics, Vol. 13, No. 7, p. 165258.
Sauberer, F., and Dirmhirn, I. 1958. Das Strahlungsklima. (In Steinhauser, F., and others, ed. österreich, Klimatographie von. Hrsg. und bearbeitet Steinhauser, von F., Eckel, O., Lauscher, F.. österreichische Akademie der Wissenschafien. Denkschriften der Gesamtakademie, Bd. 3, 1. Lief., p. 13102.)
Smith, R. C. 1973. Optical properties of the Arctic upper water. Arctic, vol. 26, No. 4, p. 30313.
Szőke, J. 1972. Computer analysis of spectra by deconvolution. Chemical Physics Letters, Vol. 15, No. 3, p. 404–07.
Thomas, C. W. 1963. On the transfer of visible radiation through sea ice and snow. Journal of Glaciology, Vol. 4, No. 34, p. 48184.
Thorndike, A. S., and others. 1975. The thickness distribution of sea ice, [by] Thorndike, A. S., Rothrock, D. A., Maykut, G. A. and Colony, R.. Journal of Geophysical Research, Vol. 8o, No. 33, p. 450113.
Untersteiner, N. 1961. On the mass and heat budget of Arctic sea ice. Archly fÜr Meteorologic, Geophysik und Bioklimatologie, Ser. A, Bd. 12, Ht. 2, p. 15182.
Weller, G. E. 1969. Radiation diffusion in Antarctic ice media. Nature, VOL 221, No. 5178, p. 35556.
Weller, G. E., and Schwerdtfeger, P. 1967. Radiation penetration in Antarctic plateau and sea ice. (In Polar meteorology. World Meteorological Organization Technical Note No. 87, p. 12041. (WMO–No. 211. TP. 111.))
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed