Skip to main content Accessibility help
×
Home

Mineralogical and morphological properties of individual dust particles in ice cores from the Tibetan Plateau

  • GUANGJIAN WU (a1) (a2), XUELEI ZHANG (a3), CHENGLONG ZHANG (a4) and TIANLI XU (a1) (a5)

Abstract

Using a field emission scanning electron microscope and energy-dispersive X-ray spectrometer (FESEM−EDS), individual insoluble dust particles in ice cores recovered from the northern (Dunde), western (Muztagata) and south-eastern (Palong-Zangbo) Tibetan Plateau were analysed in order to reveal the mineralogical and morphological characteristics of the analogue of long-range transported Asian dust. The results reveal that the dust particles are mainly composed of quartz (17–36%, number abundance), clay (37–48%) and feldspar (12–18%). Illite and chlorite are the dominant clay species, while kaolinite is rarely observed. For the three sites, regional differences in the mineral assemblages are significant, in particular the abundance of quartz, chlorite and muscovite species, reflecting the regional provenance of these dust particles and the climatic regime in their source areas. Oxide ratios in clays indicate different weathering strengths of the particles in their source regions, with a higher K2O/(SiO2 + Al2O3) in the western and northern Tibetan Plateau. The individual particles have modes of 1.48 and 1.53 in the aspect ratio and circularity distribution respectively. No significant relationship between aspect ratio and circularity was found. Quartz and feldspar particles have a narrow aspect ratio distribution. Muscovite particles have the coarsest grain size, while chlorite particles have the finest.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Mineralogical and morphological properties of individual dust particles in ice cores from the Tibetan Plateau
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Mineralogical and morphological properties of individual dust particles in ice cores from the Tibetan Plateau
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Mineralogical and morphological properties of individual dust particles in ice cores from the Tibetan Plateau
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence: Guangjian Wu <wugj@itpcas.ac.cn>

References

Hide All
Albani, S and 8 others (2014) Improved dust representation in the Community Atmosphere Model. J. Adv. Model. Earth Syst., 6(3), 541570 (doi: 10.1002/2013MS000279)
Atkinson, JD and 8 others (2013) The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds. Nature, 498, 355358 (doi: 10.1038/nature12278)
Biscaye, PE and 6 others (1997) Asian provenance of glacial dust (stage 2) in the Greenland Ice Sheet Project 2 Ice Core, Summit, Greenland. J. Geophys. Res., 102(C12), 2676526781 (doi: 10.1029/97JC01249)
Donarummo, J, Ram, M and Stoermer, EF (2003) Possible deposit of soil dust from the 1930's U.S. dust bowl identified in Greenland ice. Geophys. Res. Lett., 30(6), 1269 (doi: 10.1029/2002GL016641)
Drab, E, Gaudichet, A, Jaffrezo, JL and Colin, JL (2002) Mineral particles content in recent snow at Summit (Greenland). Atmos. Environ., 36(34), 53635376 (doi: 10.1016/S1352-2310(02)00470-3)
Formenti, P and 9 others (2011) Recent progress in understanding physical and chemical properties of African and Asian mineral dust. Atmos. Chem. Phys., 11, 82318256 (doi: 10.5194/acp-11-8231-2011)
Gao, Y, Anderson, JR and Hua, X (2007) Dust characteristics over the North Pacific observed through shipboard measurements during the ACE-Asia experiment. Atmos. Environ., 41(36), 79077922 (doi: 10.1016/j.atmosenv.2007.06.060)
Gaudichet, A, Petit, JR, Lorius, C and Lefevre, R (1986) An investigation by analytical transmission electron microscopy of individual insoluble microparticles from Antarctic (Dome C) ice core samples. Tellus B, 38(3–4), 250261 (doi: 10.1111/j.1600-0889.1986.tb00191.x)
Jeong, GY (2008) Bulk and single-particle mineralogy of Asian dust and a comparison with its source soils. J. Geophys. Res., 113, D02208 (doi: 10.1029/2007JD008606)
Journet, E, Balkanski, Y and Harrison, SP (2014) A new data set of soil mineralogy for dust-cycle modeling. Atmos. Chem. Phys., 14, 38013816 (doi: 10.5194/acp-14-3801-2014)
Kandler, K and 9 others (2011) Electron microscopy of particles collected at Praia, Cape Verde, during the Saharan mineral dust experiment: particle chemistry, shape, mixing state and complex refractive index. Tellus B, 63, 475496 (doi: 10.1111/j.1600-0889.2011.00550.x)
Kaspari, S and 7 others (2009) A high-resolution record of atmospheric dust composition and variability since A.D. 1650 from a Mount Everest ice core. J. Climate, 22(14), 39103925 (doi: 10.1175/2009JCLI2518.1)
Krueger, BJ, Grassian, VH, Cowin, JP and Laskin, A (2004) Heterogeneous chemistry of individual mineral dust particles from different dust source regions: the importance of particle mineralogy. Atmos. Environ., 38(36), 62536261 (doi: 10.1016/j.atmosenv.2004.07.010)
Ma, C-J, Tohno, S, Kasahara, M and Hayakawa, S (2004) The nature of individual solid particles retained in size-resolved raindrops fallen in Asian dust storm event during ACE–Asia. Atmos. Environ., 38(19), 29512964 (doi: 10.1016/j.atmosenv.2004.03.025)
Maggi, V (1997) Mineralogy of atmospheric microparticles deposited along the Greenland Ice Core Project ice core. J. Geophys. Res., 102(C12), 1802918036 (doi: 10.1029/97JC00613)
Mishra, SK and 10 others (2015) Morphology of atmospheric particles over semi-arid region (Jaipur, Rajasthan) of India: implications for optical properties. Aerosol Air Quality Res., 15, 974984 (doi: 10.4209/aaqr.2014.10.0244)
Mudroch, A, Zeman, AJ and San, R (1977) Identification of mineral particles in fine grained lacustrine sediments with transmission electron microscope and x-ray energy dispersive spectroscopy. J. Sedimentol. Petrol., 47(1), 244250
Nickovic, S, Vukovic, A, Vujadinovic, M, Djurdjevic, V and Pejanovic, G (2012) High-resolution mineralogical database of dust-productive soils for atmospheric dust modeling. Atmos. Chem. Phys., 12, 845855 (doi: 10.5194/acp-12-845-2012)
Okada, K and Kai, K (1995) Features and elemental composition of mineral particles collected in Zhangye, China. J. Meteor. Soc. Japan, 73(5), 947957
Okada, K and Kai, K (2004) Atmospheric mineral particles collected at Qira in the Taklamakan Desert, China. Atmos. Environ., 38(40), 69276935 (doi: 10.1016/j.atmosenv.2004.03.078)
Okada, K, Heintzenberg, J, Kai, K and Qin, Y (2001) Shape of atmospheric mineral particles collected in three Chinese arid-regions. Geophys. Res. Lett., 28(16), 31233126 (doi: 10.1029/2000GL012798)
Quigley, RM and Martin, RT (1963) Chloritized weathering products of a New England Glacial Till. Clays Clay Miner., 10(1), 107116 (doi: 10.1346/CCMN.1961.0100110)
Scheuvens, D and 7 others (2011) Individual-particle analysis of airborne dust samples collected over Morocco in 2006 during SAMUM 1. Tellus B, 63, 512530, (doi: 10.1111/j.1600-0889.2011.00554.x)
Severin, KP (2004) Energy dispersive spectrometry of common rock forming minerals. Kluwer Academic Publishers, Dordrecht
Sokolik, IN and Toon, OB (1999) Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths. J. Geophys. Res., 104(D8), 94239444 (doi: 10.1029/1998JD200048)
Svensson, A, Biscaye, PE and Grousset, FE (2000) Characterization of late glacial continental dust in the Greenland Ice Core Project ice core. J. Geophys. Res., 105(D4), 46374656 (doi: 10.1029/1999JD901093)
Taylor, SR and McLennan, SM (1995) The geochemical evolution of the continental crust. Rev. Geophys., 33, 241265 (doi: 10.1029/95RG00262)
Trochkine, D and 8 others (2003) Comparison of the chemical composition of mineral particles collected in Dunhuang, China and those collected in the free troposphere over Japan: possible chemical modification during long-range transport. Water Air Soil Pollut., 3(2), 161172 (doi: 10.1023/A:1023286306728)
Veghte, DP and Freedman, MA (2014) Facile method for determining the aspect ratios of mineral dust aerosol by electron microscopy. Aerosol Sci. Tech., 48, 715724 (doi: 10.1080/02786826.2014.920484)
Warren, SG (1982) Optical properties of snow. Rev. Geophys., 20(1), 6789 (doi: 10.1029/RG020i001p00067)
Woodward, XX, Kostinski, A, China, S, Mazzoleni, C and Cantrell, W (2015) Characterization of dust particles’ 3D shape and roughness with nanometer resolution. Aerosol Sci. Technol., 49(4), 229238 (doi: 10.1080/02786826.2015.1017550)
Wu, GJ and 5 others (2009) Volume-size distribution of microparticles in ice cores from the Tibetan Plateau. J. Glaciol., 55(193), 859868 (doi: 10.3189/002214309790152492)
Wu, GJ, Zhang, CL, Zhang, XL, Tian, LD and Yao, TD (2010) Sr and Nd isotopic composition of dust in Dunde ice core, Northern China: implications for source tracing and use as an analogue of long-range transported Asian dust. Earth Planet. Sci. Lett., 299(3–4), 409416 (doi: 10.3189/002214309790152492)
Wu, GJ and 5 others (2015) The environmental implications for dust in high-alpine snow and ice cores in Asian mountains. Global Planet. Change, 124, 2229 (doi: 10.1016/j.gloplacha.2014.11.007)
Yasunari, TJ and 7 others (2011) Influence of dust and black carbon on the snow albedo in the NASA Goddard Earth Observing System version 5 land surface model. J. Geophys. Res., 116, D02210 (doi: 10.1029/2010JD014861)
Zhang, XY and 9 others (2003) Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia: 1. Network observations. J. Geophys. Res., 108(D9), 4261 (doi: 10.1029/2002JD002632)

Keywords

Type Description Title
EXCEL
Supplementary materials

Wu Supplementary Material
Table

 Excel (471 KB)
471 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed