Skip to main content Accessibility help

Measurement and parameterization of aerodynamic roughness length variations at Haut Glacier d’Arolla, Switzerland

  • Ben W. Brock (a1), Ian C. Willis (a2) and Martin J. Sharp (a3)


Spatial and temporal variations in aerodynamic roughness length (z0) on Haut Glacier d’Arolla, Switzerland, during the 1993 and 1994 ablation seasons are described, based on measurements of surface microtopography. The validity of the microtopographic z 0 measurements is established through comparison with independent vertical wind profile z 0 measurements over melting snow, slush and ice. The z 0 variations are explained through correlation and regression analyses, using independent measurements of meteorological and surface variables, and parameterizations are developed to calculate z 0 variations for use in surface energy-balance melt models. Several independent variables successfully explain snow z 0 variation through their correlation with increasing surface roughness, caused by ablation hollow formation, during snowmelt. Non-linear parameterizations based on either accumulated melt or accumulated daily maximum temperatures since the most recent snowfall explain over 80% of snow z 0 variation. The z 0 following a fresh snowfall on an ice surface is parameterized based on relationships with the underlying ice z 0, snow depth and accumulated daily maximum temperatures. None of the independent variables were able to successfully explain ice z 0 variation. Although further comparative studies are needed, the results lend strong support to the microtopographic technique of measuring z 0 over melting glacier surfaces.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Measurement and parameterization of aerodynamic roughness length variations at Haut Glacier d’Arolla, Switzerland
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Measurement and parameterization of aerodynamic roughness length variations at Haut Glacier d’Arolla, Switzerland
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Measurement and parameterization of aerodynamic roughness length variations at Haut Glacier d’Arolla, Switzerland
      Available formats



Hide All
Ambach, W. 1963. Untersuchungen zum Energieumsatz in der Ablationszone des Grönländischen Inlandeises (Camp IV-EGIG, 69º40′05″ N, 49º37′58″ W). Medd. Grønl., 174(4).
Ambach, W. 1977. Untersuchungen zum Energieumsatz in der Akkumulationszone des grönländischen Inlandeises. Medd. Grønl., 187(7).
Andreas, E.L. 1987. A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice. Bound.-Lay. Meteorol., 38(1–2), 159184.
Andreas, E.L. 2002. Parameterizing scalar transfer over snow and ice: a review. J. Hydrometeorology, 3(4), 417432.
Arck, M. and Scherer, D.. 2002. Problems in the determination of sensible heat flux over snow. Geogr. Ann., 84A(3–4), 157169.
Arnold, N.S. and Rees, W.G.. 2003. Self-similarity in glacier surface characteristics. J. Glaciol., 49(167), 547554.
Arnold, N.S., Willis, I.C. Sharp, M.J. Richards, K.S. and Lawson, W.J.. 1996. A distributed surface energy-balance model for a small valley glacier. Development, I. and testing for Haut Glacier d’Arolla, Valais, Switzerland. J. Glaciol., 42(140), 7789.
Bintanja, R. 2000. The surface heat budget of Antarctic snow and blue ice: interpretation of temporal and spatial variability. J. Geophys. Res., 105(D19), 24,38724,407.
Bintanja, R. 2001. Characteristics of snowdrift over a bare ice surface in Antarctica. J. Geophys. Res., 106(D9), 96539659.
Bintanja, R. and van den Broeke, M.R.. 1994. Local climate, circulation and surface-energy balance of an Antarctic blue-ice area. Ann. Glaciol., 20, 160168.
Bintanja, R. and van den Broeke, M.R.. 1995. The surface energy balance of Antarctic snow and blue ice. J. Appl. Meteorol., 34(4), 902926.
Braithwaite, R.J. 1995. Aerodynamic stability and turbulent sensible-heat flux over a melting ice surface, the Greenland ice sheet. J. Glaciol., 41(139), 562571.
Brock, B.W., Willis, I.C. Sharp, M.J. and Arnold, N.S.. 2000. Modelling seasonal and spatial variations in the surface energy balance of Haut Glacier d’Arolla, Switzerland. Ann. Glaciol.,31, 5362.
Brutsaert, W. 1975. A theory of local evaporation (or heat transfer) from rough and smooth surfaces at ground level. Water Resour. Res., 11, 543550.
Denby, B. and Greuell, W.. 2000. The use of bulk and profile methods for determining surface heat fluxes in the presence of glacier winds. J. Glaciol., 46(154), 445452.
Denby, B. and Smeets, P.. 2000. Derivation of turbulent flux profiles and roughness lengths from katabatic flow dynamics. J. Appl. Meteorol., 39(9), 16011612.
Denby, B. and Snellen, H.. 2002. A comparison of surface renewal theory with the observed roughness length for temperature on a melting glacier surface. Bound.-Lay. Meteorol., 103(3), 459468.
Duynkerke, P.G. and Van den Broeke, M.R.. 1994. Surface energy balance and katabatic flow over glacier and tundra during GIMEX-91. Global Planet. Change, 9(1–2), 1728.
Föhn, P.M.B. 1973. Short-term snow melt and ablation derived from heat- and mass-balance measurements. J. Glaciol., 12(65), 275289.
Garratt, J.R. 1992. The atmospheric boundary layer. Cambridge, Cambridge University Press.
Georges, C. and Kaser, G.. 2002. Ventilated and unventilated air temperature measurements for glacier–climate studies on a tropical high mountain site. J. Geophys. Res., 107(D24), 4775. (10.1029/2002JD002503.)
Goodsell, B., Hambrey, M.J. Glasser, N.F. Nienow, P. and Mair, D.. 2003. The structural glaciology of a temperate valley glacier: Haut Glacier d’Arolla, Valais, Switzerland. Arct. Antarct. Alp. Res., 37(2), 218232.
Grainger, M.E. and Lister, H.. 1966. Wind speed, stability and eddy viscosity over melting ice surfaces. J. Glaciol., 6(43), 101127.
Greuell, W. and Genthon, C.. 2004. Modelling land-ice surface mass balance. In Bamber, J. L. and Payne, A.J. eds. Mass balance of the cryosphere: observations and modelling of contemporary and future changes. Cambridge, Cambridge University Press.
Greuell, W. and Smeets, P.. 2001. Variations with elevation in the surface energy balance on the Pasterze (Austria). J. Geophys. Res., 106(D23), 31,71731,727.
Greuell, W., Knap, W.H. and Smeets, P.C.. 1997. Elevational changes in meteorological variables along a mid-latitude glacier during summer. J. Geophys. Res., 102(D22), 25,94125,954.
Grönlund, A., Nilsson, D., Koponen, I.K. Virkkula, A. and Hansson, M.E.. 2002. Aerosol dry deposition measured with eddy-covariance technique at Wasa and Aboa, Dronning Maud Land, Antarctica. Ann. Glaciol., 35, 355361.
Havens, J.M., Müller, F. and Wilmot, G.C.. 1965. Comparative meteorological survey and a short-term heat balance study of the White Glacier, Canadian Arctic Archipelago – summer 1962. Montréal, Que, McGill University. (Axel Heiberg Island Research Reports, Meteorology 4.)
Hay, J.E. and Fitzharris, B.B.. 1988. A comparison of the energy-balance and bulk-aerodynamic approaches for estimating glacier melt. J. Glaciol., 34(117), 145153.
Hock, R. and Holmgren, B.. 1996. Some aspects of energy balance and ablation of Storglaciáren, northern Sweden. Geogr. Ann.,78A(2–3), 121131.
Hock, R. and Noetzli, C.. 1997. Areal melt and discharge modelling of Storglaciáren, Sweden. Ann. Glaciol., 24, 211216.
Hogg, I.G.G., Paren, J.G. and Timmis, R.J.. 1982. Summer heat and ice balances on Hodges Glacier, South Georgia, Falkland Islands Dependencies. J. Glaciol., 28(99), 221238.
Högström, U. 1988. Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation. Bound.-Lay. Meteorol., 42(1–2), 5578.
Hoinkes, H. 1953. Wärmeumsatz und Ablation auf Alpengletschern. II: Hornkees (Zillertaler Alpen), September 1951. Geogr. Ann., 35(2), 116140.
Hoinkes, H. and Untersteiner, N.. 1952. Wärmeumsatz und Ablation auf Alpengletschern. I: Vernagtferner (Ötztaler Alpen), August 1950. Geogr. Ann., 34(1–2), 99158.
Holmgren, B. 1971. Climate and energy exchange on a sub-polar ice cap in summer. Arctic Institute of North America Devon Island Expedition 1961–1963. Part E. Radiation climate. Uppsala, Uppsala Universitet. Meteorologiska Institutionen. (Meddelande 111.)
Hunt, J.B. 1993. Correspondence. Ablation thresholds and ash thickness. J. Glaciol., 39(133), 705707.
Inoue, J. 1989. Surface drag over the snow surface of the Antarctic Plateau. 1. Factors controlling surface drag over the katabatic wind region. J. Geophys. Res., 94(D2), 22072217.
Ishikawa, N., Owens, I.F. and Sturman, A.P.. 1992. Heat balance characteristics during fine periods on the lower part of the Franz Josef Glacier, S. Westland, New Zealand. Int. J. Climatol., 12, 397410.
Jackson, B.S. and Carroll, J.J.. 1978. Aerodynamic roughness as a function of wind direction over asymmetric surface elements. Bound.-Lay. Meteorol., 14, 323330.
Keeler, C.M. 1964. Relationship between climate, ablation, and run-off on the Sverdrup Glacier, 1963, Devon island, N.W.T. Montréal, Que, Arctic Institute of North America. (AINA Research Paper 27.)
King, J.C. 1990. Some measurements of turbulence over an Antarctic ice shelf. Q. J. Roy. Meteor. Soc., 116(492), 379400.
King, J.C. and Anderson, P.S.. 1994. Heat and water vapour fluxes and scalar roughness lengths over an Antarctic ice shelf. Bound.-Lay. Meteorol., 69(1–2), 101121.
Klok, E.J. and Oerlemans, J.. 2002. Model study of the spatial distribution of the energy and mass balance of Morteratschgletscher, Switzerland. J. Glaciol., 48(163), 505518.
Lettau, H. 1969. Note on aerodynamic roughness-parameter estimation on the basis of roughness element description. J. Appl. Meteorol., 8(5), 828832.
Liljequist, G.H. 1954. Radiation and wind and temperature profiles over an Antarctic snowfield – a preliminary note. In Proceedings, Meteorological Conference, Toronto, Ontario. American Meteorological Society; Royal Meteorological Society, 7887.
Mair, D., Nienow, P., Sharp, M., Wohlleben, T. and Willis, I.. 2002. Influence of subglacial drainage system evolution on glacier surface motion: Haut Glacier d’Arolla, Switzerland. J. Geophys. Res, 107(B8,2175). (10.1029/2001JB000514.)
Martin, S. 1975. Wind regimes and heat exchange on Glacier de Saint-Sorlin. J. Glaciol., 14(70), 91105.
Meesters, A., Bink, N., Vugts, H.F. Cannemeijer, F. and Henneken, E.. 1997. Turbulence observations above a smooth melting surface on the Greenland ice sheet. Bound.-Lay. Meteorol., 85, 81110.
Moore, R.D. and Owens, I.F.. 1984. Controls on advective snowmelt in a maritime alpine basin. J. Climate Appl. Meteorol., 23(1), 135142.
Morris, E. 1989. Turbulent transfer over snow and ice. J. Hydrol.,105, 205223.
Munro, D.S. 1989. Surface roughness and bulk heat transfer on a glacier: comparison with eddy correlation. J. Glaciol., 35(121), 343348.
Munro, D.S. 1990. Comparison of melt energy computations and ablatometer measurements on melting ice and snow. Arct. Alp. Res., 22(2), 153162.
Munro, D.S. and Davies, J.A.. 1977. An experimental study of the glacier boundary layer over melting ice. J. Glaciol., 18(80), 425436.
Obleitner, F. 2000. The energy budget of snow and ice at Breidamerkurjökull, Vatnajökull, Iceland. Bound.-Lay. Meteorol., 97(3), 385410.
Oerlemans, J. 2001. Glaciers and climate change. Lisse, , Balkema, A.A..
Oke, T.R. 1987. Boundary layer climates. Second edition. London, Routledge Press.
Paterson, W.S.B. 1994. The physics of glaciers, Third edition. Oxford, etc., Elsevier.
Plüss, C. and Mazzoni, R.. 1994. The role of turbulent heat fluxes in the energy balance of high Alpine snow cover. Nord. Hydrol., 25(1–2), 2538.
Poggi, A. 1976. Heat balance in the ablation area of the Ampere Glacier (Kerguelen Islands). J. Appl. Meteorol., 16, 4855.
Price, A.G. 1977. Snowmelt runoff processes in a subarctic area. Montréal, Que., McGill University. Department of Geography. (McGill Sub-Arctic Res. Pap. 29, Climatol. Res. Ser. 10.)
Richards, K.S. and 9 others. 1996. An integrated approach to modelling hydrology and water quality in glacierized catchments. Hydrol. Process., 10, 479508.
Samuelsson, P., Bringfelt, B. and Graham, L.P.. 2003. The role of aerodynamic roughness for runoff and snow evaporation in land-surface schemes – comparison of uncoupled and coupled simulations. Global Planet. Change, 38(1–2), 9399.
Schneider, C. 1999. Energy balance estimates during the summer season of glaciers of the Antarctic Peninsula. Global Planet. Change, 22(1–4), 117130.
Skieb, G. 1962. Zum Stahlungs- und Wärmehaushalt des Zentralen Tujuksu-Gletschers im Tienschan-Gebirge. Zeitschrift für Meteorologie, 16(1), 19.
Smeets, C.J.P.P., Duynkerke, P.G. and Vugts, H.F.. 1998. Turbulence characteristics of the stable boundary layer over a mid-latitude glacier. Part II. Pure katabatic forcing conditions. Bound.-Lay. Meteorol., 87(1), 117145.
Smeets, C.J.P.P., Duynkerke, P.G. and Vugts, H.F.. 1999. Observed wind profiles and turbulence fluxes over an ice surface with changing surface roughness. Bound.-Lay. Meteorol., 92(1), 101123.
Strasser, U., Corripio, J., Pellicciotti, F., Burlando, P., Brock, B. and Funk, M.. 2004. Spatial and temporal variability of meteorological variables at Haut Glacier d’Arolla (Switzerland) during the ablation season 2001: measurements and simulations. J. Geophys. Res., 109(D3), D03103. (10.1029/2003JD003973.)
Streten, N.A. and Wendler, G.. 1968. The midsummer heat balance of an Alaskan maritime glacier. J. Glaciol., 7(51), 431440.
Stull, R.B. 1988. An introduction to boundary layer meteorology, Dordrecht, etc., Kluwer Academic Publishers.
Sverdrup, H.U. 1936. The eddy conductivity of the air over a smooth snow field. Results of the Norwegian–Swedish Spitsbergen Expedition in 1934. Geofysiske Publikasjoner, 11(7), 169.
UNIRAS. 1990. Unimap 2000 user’s manual. Version 6. Søborg, UNIRAS Ltd.
Untersteiner, N. 1957. Glazial-meteorologische Untersuchungen im Karakorum. II: Wärmehaushalt. Arch. Meteorol. Geophys. Bioklimatol., Ser. B, 8(2), 137171.
Van de Wal, R.S.W. and Russell, A.J.. 1994. A comparison of energy balance calculations, measured ablation and meltwater runoff near Søndre Strømfjord, West Greenland. Global Planet. Change, 9(1–2), 2938.
Van de Wal, R.S.W., Oerlemans, J. and van der Hage, J.C.. 1992. A study of ablation variations on the tongue of Hintereisferner, Austrian Alps. J. Glaciol., 38(130), 319324.
Wagnon, P., Ribstein, P., Kaser, G. and Berton, P.. 1999. Energy balance and runoff seasonality of a Bolivian glacier. Global Planet. Change, 22(1–4), 4958.
Wendler, G. and Streten, N.A.. 1969. A short term heat balance study on a coast range glacier. Pure and Applied Geophysics (PAGEOPH), 77, 6877.
Wendler, G. and Weller, G.. 1974. A heat-balance study on McCall Glacier, Brooks Range, Alaska: a contribution to the International Hydrological Decade. J. Glaciol., 13(67), 1326.
Wieringa, J. 1993. Representative roughness parameters for homogeneous terrain. Bound.-Lay. Meteorol., 63(4), 323363.
Willis, I., Arnold, N. and Brock, B.. 2002. Effect of snowpack removal on energy balance, melt and runoff in a small supraglacial catchment. Hydrol. Process., 16(14), 27212749.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed