Skip to main content Accessibility help
×
×
Home

A macroscopic approach to glacier dynamics

  • William D. Harrison (a1), Charles F. Raymond (a2), Keith A. Echelmeyer (a1) and Robert M. Krimmel (a3)

Abstract

A simple approach to glacier dynamics is explored in which there is postulated to be a relationship between area and volume with three parameters: the time for area to respond to changes in volume, a thickness scale, and an area characterizing the condition of the initial state.This approach gives a good fit to the measurements of cumulative balance and area on South Cascade Glacier from 1970–97; the area time-scale is roughly 8 years, the thickness scale about 123 m, and the 1970 area roughly 4% larger than required for adjustment with volume. Combining this relationship with a version of mass continuity expressed in terms of area and volume produces a theory of glacier area and volume response to climate in which another time constant, the volume time-scale, appears. Area and volume both respond like a damped spring and mass system. The damping of the South Cascade response is approximately critical, and the volume time-scale is roughly 48 years, six times the area time-scale. The critically damped spring and mass analogy reproduces the time dependence predicted by the more complicated traditional theory of Nye.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A macroscopic approach to glacier dynamics
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A macroscopic approach to glacier dynamics
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A macroscopic approach to glacier dynamics
      Available formats
      ×

Copyright

References

Hide All
Bader, H. 1954. Sorge’s Law of densification of snow on high polar glaciers. J. Glaciol., 2(15), 319323.
Bahr, D. B., Meier, M. F. and Peckham, S. D.. 1997. The physical basis of glacier volume–area scaling. J. Geophys. Res., 102(B9), 20,35520,362.
Boudreaux, A. and Raymond, C.. 1997. Geometry response of glaciers to changes in spatial pattern of mass balance. Ann. Glaciol., 25, 407411.
Elsberg, D. H., Harrison, W. D., Echelmeyer, K. A. and Krimmel, R. M.. 2001. Quantifying the effects of climate and surface change on glacier mass balance. J. Glaciol., 47(159), 649658.
Harrison, W. D., Elsberg, D. H., Echelmeyer, K. A. and Krimmel, R. M.. 2001. On the characterization of glacier response by a single time-scale. J. Glaciol., 47(159), 659664.
Jóhannesson, T., Raymond, C. F. and Waddington, E. D.. 1989a. A simple method for determining the response time of glaciers. In Oerlemans, J., ed. Glacier fluctuations and climatic change. Dordrecht, etc., Kluwer Academic Publishers, 343352.
Jóhannesson, T., Raymond, C. and Waddington, E.. 1989b. Time-scale for adjustment of glaciers to changes in mass balance. J. Glaciol., 35(121), 355369.
Krimmel, R. M. 1999. Analysis of difference between direct and geodetic mass balance measurements at South Cascade Glacier, Washington. Geogr. Ann., 81A(4), 653658.
Nye, J. F. 1960. The response of glaciers and ice-sheets to seasonal and climatic changes. Proc. R. Soc. London, Ser. A, 256(1287), 559584.
Nye, J. F. 1963. The response of a glacier to changes in the rate of nourishment and wastage. Proc. R. Soc. London, Ser. A, 275(1360), 87112.
Nye, J. F. 1965. A numerical method of inferring the budget history of a glacier from its advance and retreat. J. Glaciol., 5(41), 589607.
Oerlemans, J. 1997. A flowline model for Nigardsbreen, Norway: projection of future glacier length based on dynamic calibration with the historic record. Ann. Glaciol., 24, 382389.
Raper, S. C. B., Briffa, K. R. and Wigley, T. M. L.. 1996. Glacier change in northern Sweden from AD 500: a simple geometric model of Storglaciären. J. Glaciol., 42(141), 341351.
Ye, Baisheng, Yunjian, Ding, Fengjing, Liu and Caohai, Liu. 2003. Responses of various scale mountain valley glaciers and corresponding runoffs to climatic change. J. Glaciol., 49(164), 17.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed