Skip to main content Accessibility help
×
Home

Interaction Among Controls of Cirque Development: Sangre de Cristo Mountains, Colorado, U.S.A.

  • Greg A. Olyphant (a1)

Abstract

A regression model calibrated on 23 cirques from the Sangre de Cristo Mountains, south-central Colorado, suggests that local-scale climatic controls interact with geologic materials to explain intramountain variation to cirque development. Topoclimatic effects maximize cirque development on ridges that project well above the Pleistocene glaciation limit, and in positions that minimize total radiation receipt. If an optimum topoclimate coincides with densely jointed (erosible) bedrock materials, cirque development will be at a maximum. However, cirque development can be deceptively poor in situations where a favorable topoclimate coincides with massive (sparsely jointed) bedrock materials. The interaction between local-scale climatic–geologic controls subsumes their independent effects. Significant correlation between cirque development and an individual process control may not emerge due to complications produced by one or more other controls.

Résumé

Une analyse statistique de 23 cirques des Sangre de Cristo Mountains au Centre-Sud du Colorado fait penser que des facteurs climatiques à l’échelle locale interférent avec des faits géologiques pour expliquer les variations d’un massif a l’autre dans le développement des cirques. Des effets topoclimatiques accentuent le développement de cirques sur les chaînes qui dépassent largement l’altitude de la limite de la glaciation Pleistocène et dans des sites qui diminuent la radiation totale reçue. Si un optimum topoclimatique coïncide avec la présence de matériaux fins compactés (érodables) dans le sous-sol, le développement des cirques sera maximum. Cependant, le développement de cirque peut être étonnamment faible dans des sites où un topoclimat favorable coïncide avec des maténaux de roches massives (peu faillées). L’interaction entre les facteurs climaliqucs et géologiques à échelle locale masque leurs effets particuliers. Des corrélations significatives entre le développement des cirques et un facteur individuel ne peuvent être mis en évidence en raison des complications qui résultent de l’action d’un ou de plusieurs autres facteurs.

Zusammenfassung

Ein Regressionsmodell hergeleitet aus 23 Karen in den Sangre de Cristo Mountains, südliches Mittel-Colorado, führt zu dem Schluss, dass die Verschiedenheit der Karentwicklung innerhalb des Gebirges aus dem Zusammenwirken lokal-klimatischer Einflüsse mit geologischen Verhältnissen erklärt werden muss. Topoklimatische Wirkungen fördern die Karentwicklung an Rücken, die weit über das pleislozäne Vereisungsniveau aufragen und deren Lage den Gesamt-Strahlungseinfall zu einem Minimum macht. Fällt ein optimales Topoklima mit dicht gegliedertem (erodierharem) Untergrundmaterial zusammen, so erreicht die Karentwicklung ihr Maximum. Andererseits kann die Karentwicklung in Lagen, wo ein günstiges Topoklima mit massivem (wenig gegliedertem) Untergrundmaterial zusammentrifft, erstaunlieh gering sein. Das Zusammenwirken zwischen lokalen klimatischen und geologischen Ursachen schliesst ihre unabhängige Wirkung mit ein. Signifikante Korrelalionen zwischen der Karentwicklung und speziellen Ursachen von Vorgängen dürften infolge von Komplikationen, die von einer oder mehr Ursachen hervorgerufen werden, verdeckt werden.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Interaction Among Controls of Cirque Development: Sangre de Cristo Mountains, Colorado, U.S.A.
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Interaction Among Controls of Cirque Development: Sangre de Cristo Mountains, Colorado, U.S.A.
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Interaction Among Controls of Cirque Development: Sangre de Cristo Mountains, Colorado, U.S.A.
      Available formats
      ×

Copyright

References

Hide All
Anderson, L. W. 1978. Cirque glacier erosion rates and characteristics of neoglacial tills, Pangnirtung fiord area, Baffin Island, N.W.T., Canada. Arctic and Alpine Research, Vol. 10, No. 4, p. 749–60.
Andrews, J. T. 1971. Quantitative analysis of the factors controlling the distribution of corrie glaciers in Okoa Bay, east Baffin Island. (In Morisawa, M., ed. Quantitative geomorphology. Binghamton, N.Y., State University of New York, p. 233–41.)
Andrews, J. T. 1972. Glacier power, mass balances, velocities, and erosion potential. Zeitschrift für Geomorphalogie, Supplementbd. 13, p. 117.
Andrews, J. T., and others. 1970. An inventory of the present and past glacierization of Home Bay and Okoa Bay, east Baffin Island, N.W.T., Canada, and some climatic and palaeoclimatic considerations, by Andrews, J. T., Barry, R. G., and Drapier, L.. Journal of Glaciology, Vol. 9, No. 57, p. 337–62.
Boulton, G. S. [c 1974.] Processes and patterns of glacial erosion. (In Coates, D. R., ed. Glacial geomorphology. Binghamton, N.Y., State University of New York, p. 4187.)
Chorlton, J. C., and Lister, H. 1971. Geographical control of glacier budget gradients in Norway. Norsk Geogrfiik Tidsskrift, Bd. 25, Ht. 3–4, p. 159–64.
Derbyshire, E., and Evans, I. S. [c 1976.] The climatic factor in cirque variation. (In Derbyshire, E., ed. Geomorphology and climate. New York, John Wiley and Sons, Inc., p. 447–94.)
Embleton, C., and King, C. A. M. 1975. Glacial geomorphology. [Glacial and periglacial geomorphology. Second edition. Vol. 1] London, Edward Arnold.
Evans, I. S. 1977. World-wide variations in the direction and concentration of cirque and glacier aspects. Geografiska Annaler, Vol. 59A, Nos. 34, p. 15175.
Evans, I. S., and Cox, N. 1974. Geomorphomctry and the operational definition of cirques. Area (Cambridge), Vol. 6, No. 2, p. 150–53.
Garnier, B. J., and Ohmura, A. 1968. A method of calculating the direct shortwave radiation income of slopes. Journal of Applied Meteorology, Vol. 7, No. 5, p. 796800.
Gordon, J. E., 1977. Morphometry of cirques in the Kintail-Affric-Cannish area of northwest Scotland. Geografiska Annaler, Vol. 59A, Nos. 34, p. 17794.
Graf, W. L. 1976. Cirques as glacier locations. Arctic and Alpine. Research, Vol. 8, No. 1, p. 7990.
Haynes, V. M. 1968. The influence of glacial erosion and rock structure on corries in Scotland. Geografiska Annaler, Vol. 50aA, No. 4, p. 22134.
Jaeger, C. 1972. Rock mechanics and engineering. London, Cambridge University Press.
Johnson, R. B. 1969. Geologic map of the Trinidad Quandrangle, south-central Colorado. U.S. Geological Survey. Miscellaneous Geologic Investigations. Map I–558. [Scale 1:250000.]
King, C. A. M. 1970. Feedback relationships in geomorphology. Geografiska. Annaler, Vol. 52A, Nos. 3–04, p. 14759.
Morris, S. E. 1979. Holocene facies of Blanca Massif, southern Colorado. Geological Society of America. Abstracts with Programs, Vol. 11, No. 6, p. 297.
Olyphant, G. A. 1977. Topoclimate and the depth of cirque erosion. Geografiska Annaler, Vol. 59A, Nos. 3–4, p. 20913.
Overall, J. E., and Klett, J. C. 1972. Applied multivariate analysis. New York, McGraw-Hill Book Co., Inc.
Richmond, G. M. 1965. Glaciation of the Rocky Mountains. (In Wright, H. E. jr., and Frey, D. C., ed. The Quaternary of the United States. Princeton, N.J., Princeton University Press, p. 21731.)
Sugden, D. E., and John, B. S. 1976. Glaciers and landscape: a geomorphological approach. London, Edward Arnold.
Temple, P. H. 1965. Some aspects of cirque distribution in the west-central Lake District, northern England. Geografiska Annaler, Vol. 47A, No. 3, p. 18593.
Trenhaile, A. S. 1976. Cirque morphometry in the Canadian Cordillera. Annals of the Association of American Geographers, Vol. 66, No. 3, p. 45162.
Wendler, G., and Ishikawa, N., 1974. The effect of slope, exposure, and mountain screening on the solar radiation of McCall Glacier, Alaska. Journal of Glaciology, Vol. 13, No. 68, p. 21326.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed