Skip to main content Accessibility help

Improved method to determine radio-echo sounding reflector depths from ice-core profiles of permittivity and conductivity

  • Olaf Eisen (a1) (a2), Frank Wilhelms (a1), Daniel Steinhage (a1) and Jakob Schwander (a3)


We present a technique that modifies and extends down-hole target methods to provide absolute measures of uncertainty in radar-reflector depth of origin. We use ice-core profiles to model wave propagation and reflection, and then cross-correlate the model results with radio-echo sounding (RES) data to identify the depth of reflector events. Stacked traces recorded with RES near the EPICA drill site in Dronning Maud Land, Antarctica, provide reference radargrams, and dielectric properties along the deep ice core form the input data to a forward model of wave propagation that produces synthetic radargrams. Cross-correlations between synthetic and RES radargrams identify differences in propagation wave speed. They are attributed to uncertainties in pure-ice permittivity and are used for calibration. Removing conductivity peaks results in the disappearance of related synthetic reflections and enables the unambiguous relation of electric signatures to RES features. We find that (i) density measurements with g-attenuation or dielectric profiling are too noisy below the firn–ice transition to allow clear identification of reflections, (ii) single conductivity peaks less than 0.5 m wide cause the majority of prominent reflections beyond a travel time of about 10 µs (~900m depth) and (iii) some closely spaced conductivity peaks within a range of 1–2m cannot be resolved within the RES or synthetic data. Our results provide a depth accuracy to allow synchronization of age–depth profiles of ice cores by RES, modeling of isochronous internal structures, and determination of wave speed and of pure-ice properties. The technique successfully operates with dielectric profiling and electrical conductivity measurements, suggesting that it can be applied at other ice cores and drill sites.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Improved method to determine radio-echo sounding reflector depths from ice-core profiles of permittivity and conductivity
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Improved method to determine radio-echo sounding reflector depths from ice-core profiles of permittivity and conductivity
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Improved method to determine radio-echo sounding reflector depths from ice-core profiles of permittivity and conductivity
      Available formats



Hide All
Annan, A.P. and Davis, J.L.. 1976. Impulse radar sounding in permafrost. Radio Science, 11(4), 383394.
Bittelli, M., Flury, M. and Roth, K.. 2004. Use of dielectric spectroscopy to estimate ice content in frozen porous media. Water Resour. Res., 40(4), W04212. (10.1029/2003WR002343.)
Bogorodsky, V.V., Bentley, C.R. and Gudmandsen, P.E.. 1985. Radioglaciology Dordrecht, etc., D. Reidel Publishing Co.
Clarke, G.K.C., Lhomme, N.M. and Marshall, S.J.. 2005. Tracer transport in the Greenland ice sheet: three-dimensional isotopic stratigraphy. Quat. Sci. Rev., 24, 155171.
Clarke, T.S. and Bentley, C.R.. 1994. High-resolution radar on Ice Stream B2, Antarctica: measurements of electromagnetic wave speed in firn and strain history from buried crevasses. Ann. Glaciol., 20, 153159.
Clough, J.W. and Bentley, C.R.. 1970. Measurements of electromagnetic wave velocity in the East Antarctic ice sheet. In Symposium at Hanover 1968 – Antarctic Glaciological Exploration (ISAGE). Wallingford, Oxon., International Association of Scientific Hydrology, 115128. (IAHS Publication 86.)
Dahl-Jensen, D. and 9 others. 1997. A search in north Greenland for a new ice-core drill site. J. Glaciol., 43(144), 300306.
Dowdeswell, J.A. and Evans, S.. 2004. Investigations of the form and flow of ice sheets and glaciers using radio-echo sounding. Rep. Prog. Phys., 67, 18211861.
Eisen, O., Nixdorf, U., Wilhelms, F. and Miller, H.. 2002. Electromagnetic wave speed in polar ice: validation of the common-midpoint technique with high-resolution dielectric-profiling and γ-density measurements. Ann. Glaciol., 34, 150156.
Eisen, O., Wilhelms, F., Nixdorf, U. and Miller, H.. 2003. Revealing the nature of radar reflections in ice: DEP-based FDTD forward modeling. Geophys. Res. Lett., 30(5), 12181221.
Eisen, O., Rack, W., Nixdorf, U. and Wilhelms, F.. 2005. Characteristics of accumulation around the EPICA deep-drilling site in Dronning Maud Land, Antarctica. Ann. Glaciol., 41, 4156.
Evans, S. 1965. Dielectric properties of ice and snow – a review. J. Glaciol., 5(42), 773792.
Fahnestock, M.A., Abdalati, W., Luo, S. and Gogineni, S.. 2001. Internal layer tracing and age–depth–accumulation relationships for the northern Greenland ice sheet. J. Geophys. Res., 106(D24), 33,78933,797.
Fisher, E., McMechan, G.A. and Annan, A.P.. 1992. Acquisition and processing of wide-aperture ground-penetrating radar data. Geophysics, 57(3), 495504.
Fortin, R. and Fortier, R.. 2001. Tomographic imaging of a snow-pack. In Proceedings of the 58th Annual Eastern Snow Conference. Hanover, NH, US Army Engineer Research and Development Center–US Army Cold Regions Research and Engineering Laboratory.
Frezzotti, M., Gandolfi, S. and Urbini, S.. 2002. Snow megadunes in Antarctica: sedimentary structure and genesis. J. Geophys. Res., 107(D18), 4344. (10.1029/2001JD000673.)
Fujita, S., Matsuoka, T., Ishida, T., Matsuoka, K. and Mae, S.. 2000. A summary of the complex dielectric permittivity of ice in the megahertz range and its applications for radar sounding of polar ice sheets. In Hondoh, T., ed. Physics of ice core records. Sapporo, Hokkaido University Press, 185212.
Hammer, C.U. 1980. Acidity of polar ice cores in relation to absolute dating, past volcanism, and radio-echoes. J. Glaciol., 25(93), 359372.
Hargreaves, N.D. 1978. The radio-frequency birefringence of polar ice. J. Glaciol., 21(85), 301313.
Hempel, L., Thyssen, F., Gundestrup, N., Clausen, H.B. and Miller, H.. 2000. A comparison of radio-echo sounding data and electrical conductivity of the GRIP ice core. J. Glaciol., 46(154), 369374.
Jacobel, R.W. and Hodge, S.M.. 1995. Radar internal layers from the Greenland summit. Geophys. Res. Lett., 22(5), 587590.
Jacobel, R.W. and Welch, B.C.. 2005. A time marker at 17.5 kyr BP detected throughout West Antarctica. Ann. Glaciol., 41, 4751.
Jacobel, R.W., Gades, A.M. Gottschling, D.L. Hodge, S.M. and Wright, D.L.. 1993. Interpretation of radar-detected internal layer folding in West Antarctic ice streams. J. Glaciol., 39(133), 528537.
Jezek, K.C. and Roeloffs, E.A.. 1983. Measurements of radar wave speeds in polar glaciers using a down-hole radar target technique. Cold Reg. Sci. Technol., 8(2), 199208.
Kanagaratnam, P., Gogineni, S.P. Gundestrup, N. and Larsen, L.. 2001. High-resolution radar mapping of internal layers at the North Greenland Ice Core Project. J. Geophys. Res., 106(D24), 33,79933,811.
Karlöf, L. 2004. Temporal and spatial variability of snow accumulation and redistribution, and its impact on the interpretation of ice cores. (PhD thesis, University of Oslo.)
Karlöf, L. and 11 others. 2005. Accumulation variability over a small area in east Dronning Maud Land, Antarctica, as determined from shallow firn cores and snow pits: some implications for ice-core records. J. Glaciol., 51(174), 343352.
Kohler, J., Moore, J.C. and Isaksson, E.. 2003. Comparison of modelled and observed responses of a glacier snowpack to ground-penetrating radar. Ann. Glaciol., 37, 293297.
Kovacs, A., Gow, A.J. and Morey, R.M.. 1995. The in situ dielectric constant of polar firn revisited. Cold Reg. Sci. Technol., 23(3), 245256.
Kravchenko, I., Besson, D. and Meyers, J.. 2003. In situ measurements of the index of refraction of the south polar firn with RICE detector. J. Glaciol., 50(171), 522532.
Leonard, K., Bell, R.E. Studinger, M. and Tremblay, B.. 2004. Anomalous accumulation rates in the Vostok ice-core resulting from ice flow over Lake Vostok. Geophys. Res. Lett., 31(24), L24401. (10.1029/2004GL021102.)
Looyenga, H. 1965. Dielectric constant of heterogeneous mixtures. Physica, 31(3), 401406.
Lythe, M.B., Vaughan, D.G. and BEDMAP consortium. 2001. BEDMAP: a new ice thickness and subglacial topographic model of Antarctica. J. Geophys. Res., 106(B6), 11,33511,351.
Maidique, M.A., von Hippel, A., Knoll, D.B. and Westphal, W.B.. 1971. Transfer of protons through ‘pure’ ice Ih single crystals. III. Extrinsic versus intrinsic polarization; surface versus volume conduction. J. Chem. Phys., 54, 150160.
Matsuoka, K., Uratsuka, S., Fujita, S. and Nishio, F.. 2004a. Ice-flow induced scattering zone within the Antarctic ice sheet revealed by high-frequency airborne radar. J. Glaciol., 50(170), 382388.
Matsuoka, K., Saito, R. and Naruse, R.. 2004b. A novel backpackable ice-penetrating radar system. J. Glaciol., 50(168), 147150.
Millar, D.H.M. 1981. Radio-echo layering in polar ice sheets and past volcanic activity. Nature, 292(5822), 441443.
Millar, D.H.M. 1982. Acidity levels in ice sheets from radio echosounding. Ann. Glaciol., 3, 199203.
Miners, W.D. 1998. Electromagnetic reflections inside ice sheets. (PhD thesis, Open University.)
Miners, W.D., Hildebrand, A., Gerland, S., Blindow, N., Steinhage, D. and Wolff, E.W.. 1997. Forward modeling of the internal layers in radio echo sounding using electrical and density measurements from ice cores. J. Phys. Chem., Ser. B, 101(32), 62016204.
Miners, W.D., Wolff, E.W. Moore, J.C. Jacobel, R. and Hempel, L.. 2002. Modeling the radio echo reflections inside the ice sheet at Summit, Greenland. J. Geophys. Res., 107(B8), 2172. (10.1019/2001JB000535.)
Moore, J.C. 1988. Dielectric variability of a 130 m Antarctic ice core: implications for radar sounding. Ann. Glaciol., 11, 9599.
Moore, J.C. and Paren, J.G.. 1987. A new technique for dielectric logging of Antarctic ice cores. J. Phys. (Paris), 48(C1), 155160.
Moore, J.C., Wolff, E.W. Clausen, H.B. and Hammer, C.U.. 1992. The chemical basis for the electrical stratigraphy of ice. J. Geophys. Res., 97(B2), 18871896.
Moore, J.C., Wolff, E.W. Clausen, H.B. Hammer, C.U. Legrand, M.R. and Fuhrer, K.. 1994. Electrical response of the Summit-Greenland ice core to ammonium, sulphuric acid, and hydrochloric acid. Geophys. Res. Lett., 21(7), 565568.
Morse, D.L. 1997. Glacier geophysics at Taylor Dome, Antarctica. (PhD thesis, University of Washington.)
Morse, D.L., Waddington, E.D. and Steig, E.J.. 1998. Ice age storm trajectories inferred from radar stratigraphy at Taylor Dome, Antarctica. Geophys. Res. Lett., 25(17), 33833386.
Murray, T. and 6 others. 2000. Glacier surge propagation by thermal evolution at the bed. J. Geophys. Res., 105(B6), 13,49113,507.
Neftel, A., Moor, E., Oeschger, H. and Stauffer, B.. 1985. Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries. Nature, 315, 4547.
Nereson, N.A., Raymond, C.F. Jacobel, R.W. and Waddington, E.D.. 2000. The accumulation pattern across Siple Dome, West Antarctica, inferred from radar-detected internal layers. J. Glaciol., 46(152), 7587.
Nixdorf, U. and 6 others. 1999. The newly developed airborne radio-echo sounding system of the AWI as a glaciological tool. Ann. Glaciol., 29, 231238.
Pölli, A. and 6 others. 2002. Spatial and temporal variability of snow accumulation using ground-penetrating radar and ice cores on a Svalbard glacier. J. Glaciol., 48(162), 417424.
Popov, S.V., Sheremet’yev, A.N., Masolov, V.N. Lukin, V.V. Mironov, A.V. and Luchininov, V.S.. 2003. Velocity of radio-wave propagation in ice at Vostok station, Antarctica. J. Glaciol., 49(165), 179183.
Richardson, C., Aarholt, E., Hamran, S.E. Holmlund, P. and Isaksson, E.. 1997. Spatial distribution of snow in western Dronning Maud Land, East Antarctica, mapped by a ground-based snow radar. J. Geophys. Res., 102(B9), 20,34320,353.
Richardson-Näslund, C. 2001. Spatial distribution of snow in Antarctica and other glacier studies using ground-penetrating radar. (PhD thesis, Stockholm University.)
Robin, G.deQ., Evans, S. and Bailey, J.T.. 1969. Interpretation of radio echo sounding in polar ice sheets. Philos. T. Roy. Soc. London, Ser. A. 265(1166), 437505.
Siegert, M.J. 1999. On the origin, nature and uses of Antarctic ice-sheet radio-echo layering. Prog. Phys. Geog., 23(2), 159179.
Siegert, M.J. and Hodgkins, R.. 2000. A stratigraphic link across 1100km of the Antarctic ice sheet between the Vostok ice-core site and Titan Dome (near South Pole). Geophys. Res. Lett., 27(14), 21332136.
Siegert, M.J., Hodgkins, R. and Dowdeswell, J.A.. 1998. A chronology for the Dome C deep ice-core site through radio-echo layer correlation with the Vostok ice core, Antarctica. Geophys. Res. Lett., 25(7), 10191022.
Siegert, M.J., Hindmarsh, R.C.A. and Hamilton, G.S.. 2003. Evidence for a large surface ablation zone in central East Antarctica during the last Ice Age. Quat. Res., 59, 114121.
Siegert, M.J. and 9 others. 2004. Ice flow direction change in Interior West Antarctica. Science, 305(5692), 19481951.
Spikes, V.B., Hamilton, G.S. Arcone, S.A. Kaspari, S. and Mayewski, P.. 2004. Variability in accumulation rates from GPR profiling on the West Antarctic plateau. Ann. Glaciol., 39, 238244.
Steinhage, D., Nixdorf, U., Meyer, U. and Miller, H.. 2001. Subglacial topography and internal structure of central and western Dronning Maud Land, Antarctica, determined from airborne radio echo sounding. J. Appl. Geophys., 47, 183189.
Steinhage, D., Eisen, O. and Clausen, H.B.. 2005. Regional and temporal variation of accumulation around NorthGRIP derived from ground-penetrating radar. Ann. Glaciol., 42, 326330.
Vaughan, D.G., Anderson, P.S. King, J.C. Mann, G.W. Mobbs, S.D. and Ladkin, R.S.. 2004. Imaging of firn isochrones across an Antarctic ice rise and implications for patterns of snow accumulation rate. J. Glaciol., 50(170), 413418.
Wilhelms, F. 1996. Leitfähigkeits- und Dichtemessung an Eisbohrkernen. Ber. Polarforsch. 191.
Wilhelms, F. 2000. Messung dielektrischer Eigenschaften polarer Eiskerne. Ber. Polarforsch. 367.
Wilhelms, F. 2005. Explaining the dielectric properties of firn as a density-and-conductivity mixed permittivity (DECOMP). Geophys. Res. Lett., 32(16), L16501. (10.1029/2005GL022808.)
Wolff, E., Basile, I., Petit, J.R. and Schwander, J.. 1999. Comparison of Holocene electrical records from Dome C and Vostok, Antarctica. Ann. Glaciol., 29, 8993.
Wolff, E.W., Cook, E., Barnes, P.R.F. and Mulvaney, R.. 2005. Signal variability in replicate ice cores. J. Glaciol., 51(174), 462468.
Yee, K.S. 1966. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas and Propagation, 14, 302307.


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed