Skip to main content Accessibility help
×
Home

Icebergs as a Fresh-Water Source: An Appraisal*

  • W. F. Weeks (a1) and W. J. Campbell (a2)

Abstract

A history of the idea of transporting large icebergs to arid regions to provide a fresh-water source is presented and the problem is considered in four main parts: (1) Location of a supply of icebergs. Only in the Antarctic are supplies of large tabular icebergs available. Data on the size distribution of these icebergs are reviewed and it is concluded that icebergs of almost any desired size can readily be located. (2) Towing. Steady-state towing velocities of different sized icebergs are calculated based on estimates of the drag of the icebergs and the bollard pull of tugs. Because drag increases with velocity squared, large icebergs can only be towed at very slow velocities (<c. 0.5 m/s). However, tugs that can be built within the capabilities of current technology are capable of towing extremely large icebergs. (3) Melting in transit. Calculations of melting indicate that, although melting losses are significant and may be excessive for small icebergs, when large icebergs are towed, large amounts of ice are left when the iceberg arrives at its destination. Towing trajectories, travel times, and ice delivery rates are calculated for optimum routes between the Amery Ice Shelf and Western Australia (A–A) and the Ross Ice Shelf and the Atacama Desert (R–A). Forces included in these calculations are towing, air, water, gradient current and Coriolis. Transit times exceed 107 d (A–A) and 145 d (R–A) with over 50% of the initial ice delivered. (4) Economic feasibility. After total towing charges are paid, it is possible to deliver ice to Western Australia for 1.3 mills/m3 of water and to the Atacama Desert region for 1.9 mills/m3. These costs are appreciably less than the expected price of water delivered at these locations (8 mills/m3). The water delivered by the operation of one super-tug alone would irrigate 16 000 km2. Problems related to both iceberg transport and processing are reviewed and although substantial problems do exist, they appear to be within the capabilities of current technology.

It is suggested that the overall idea is indeed feasible and should be explored further by specific groups of experts.

Résumé

On présente un historique de l’idée de transporter de grands icebergs vers les régions arides comme sources d’eau douce. Le problème est considéré de quatre points de vue principaux: 1°) Emplacement des approvisionnements en icebergs. Seul l’Antarctique dispose d’approvisionnements en grands icebergs tabulaires. Des données sur la répartition de ces icebergs de différentes tailles sont passées en revue et on conclut que des icebergs de presque toutes les tailles que l’on peut désirer peuvent être aisément trouvés. 2°) Remorquage. Des normes de vitesse de remorquage pour des icebergs de différentes dimensions sont calculées d’après une estimation du tirage des icebergs et de l’effort de traction des remorqueurs. Comme le tirage augmente avec le carré de la vitesse, on ne peut remorquer les grands icebergs qu’à des vitesses très faibles (<c. 0,5 m/s). Néanmoins, les remorqueurs que l’on sait construire dans le cadre de la technologie courante sont capables de remorquer des icebergs extrêmement grands. 3°) Fusion au cours du voyage. Les calculs de fusion indiquent que, bien que les pertes par fusion soient significatives et peuvent être excessives pour de petits icebergs, lorsque l’on transporte de gros icebergs, il reste beaucoup de glace lorsque l’iceberg arrive à destination. La route du remorquage, le temps de traversée et la vitesse de livraison de la glace sont calculés pour le meilleur itinéraire entre l’Amery Ice Shelf et l’Australie Occidentale (A–A) ainsi qu’entre le Ross Ice Shelf et le Désert d’Atacama (R–A). Les forces entrant dans ces calculs sont le remorquage, l’air, l’eau, les courants marins et la force de Coriolis. Le temps de parcours dépasse 107 (A–A) et 145 (R–A) jours avec plus de 50% de la glace initiale effectivement livrée. 4°) Etude économique. Après paiement de la totalité des charges de remorquage, il est possible de livrer de la glace à l’Australie Occidentale pour $0.0013 par m3 et vers la région du Désert d’Atacama pour $0.0019 par m3. Ces coûts sont nettement inférieurs au prix excompté pour de l’eau livrée aux mêmes endroits ($0.008 par m3). L’eau livrée à partir d’une opération d’un seul super-remorqueur irriguerait 16 000 km2. Les problèmes concernant à la fois la conduite et le traitement posterieur des icebergs sont passés en revue et bien qu’il en subsiste et qu’ils soient ardus, ils semblent rester à l’intérieur des possibilités de la technologie courante.

On suggère que l’idée dans son ensemble est vraiment réalisable et devrait être explorée plus en détail par un groupe spécifique d’experts.

Zusammenfassung

Nach einem historischen Rückblick wird die Idee des Transportes grosser Eisberge in aride Gebiete zur Süsswassergewinnung unter 4 Hauptgesichtspunkten betrachtet: 1) Lage eines Vorrates an Eisbergen. Nur in der Antarktis gibt es grosse Tafeleisberge. Eine Durchsicht der Daten über die Grössenverteilung dieser Eisberge führt zu dem Ergebnis, dass Eisberge fast jeder gewünschten Grösse leicht gefunden werden können. 2) Abschleppen. Gleichförmige Abschleppgeschwindigkeiten für Eisberge verschiedener Grösse werden auf der Grundlage von Schätzungen des Zugwiderstandes der Eisberge und der Bollard-Zugkraft der Schlepper berechnet. Da der Widerstand mit dem Quadrat der Geschwindigkeit zunimmt, können grosse Eisberge nur mit sehr geringen Geschwindigkeiten (<c. 0,5 m/s) abgeschleppt werden. Doch sind Schlepper, die beim derzeitigen Stand der Technik gebaut werden können, in der Lage, extrem grosse Eisberge abzuschleppen. 3) Abschmelzen währand des Transportes. Schmelzberechnungen ergeben, dass die Schmelzverluste zwar beträchtlich und für kleine Eisberge vermutlich übermässig sind, dass aber von grossen Eisbergen noch grosse Mengen von Eis am Bestimmungsort ankommen. Schlepprouten, Fahrzeiten und Eisausbeute werden für optimale Wege zwischen dem Amery-Schelfeis und West-Australien (A–A) sowie zwischen dem Ross-Schelfeis und der AtacamaWüste (R–A) berechnet. In diesen Rechnungen sind die Kräfte des Schleppens, des Luft- und Wasserwiderstandes und die Coriolis-Kraft berücksichtigt. Die Fahrzeiten betragen 107 (A–A) und 145 (R–A) Tage bei einer Eisausbeute von über 50%. 4) Wirtschaftliche Vertretbarkeit. Nach Bezahlung der gesamten Abschleppkosten kann Eis nach West-Australien für 0.0013 Dollar pro m3 und in die Atacama-Wüste für 0.0019 Dollar pro m3 geliefert werden. Diese Kosten sind merklich geringer als der voraussichtliche Preis für Wasser, das in diese Gebiete gebracht wird (0.0080 Dollar pro m3). Das aus der Fahrt eines einzigen Super-Schleppers gewonnene Wasser würde 16 000 km2 bewässern können. Die Probleme sowohl des Transportes wie der Verarbeitung der Eisberge werden überprüft; sie scheinen trotz ihrer Gewichtigkeit innerhalb der technischen Möglichkeiten unserer Zeit zu liegen.

Da die Grundidee wirklich ausführbar erscheint, wird vorgeschlagen, sie durch besondere Gruppen von Experten weiter zu verfolgen.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Icebergs as a Fresh-Water Source: An Appraisal*
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Icebergs as a Fresh-Water Source: An Appraisal*
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Icebergs as a Fresh-Water Source: An Appraisal*
      Available formats
      ×

Copyright

Footnotes

Hide All
*

A preliminary version of this paper was presented at the Symposium on the Hydrology of Glaciers, 7–13 September 1969, Cambridge, England.

Footnotes

References

Hide All
Argyriadis, D. A. 1957. Modern tug design with particular emphasis on propeller design, maneuverability, and endurance. Transactions of the Society of Naval Architects and Marine Engineers, Vol. 65, p. 362409.
Ashton, G. D. 1972. Turbulent heat transfer to wavy boundaries. (In Landis, R. B., and Hordemann, G. J., ed. Proceedings of the 1972 Heat Transfer and Fluid Mechanics Institute. Stanford, Calif., Stanford University Press, p. 20013.)
Ashton, G. D. Unpublished. The formation of ice ripples on the underside of river ice cover. [Ph.D. thesis, University of Iowa, 1971.]
Budd, W. F., and others. 1967. The Amery Ice Shelf, by Budd, W. [F.], Landon-Smith, I. [H.] and Wishart, E. [R.]. (In Ōura, H., ed. Physics of snow and ice: international conference on low temperature science. … 1966. … Proceedings, Vol. 1, Pt. 1. [Sapporo], Institute of Low Temperature Science, Hokkaido University, p. 44767.)
Budinger, T. F. Unpublished. Wind effect on icebergs. [International Ice Patrol, U.S. Coast Guard unpublished internal report, 1960.]
Burt, J. C. 1956[a]. The battle of the bergs. Natural History, Vol. 65, No. 4, p. 18691.
Burt, J. C. 1956[b]. Iceberg water for California? Science Digest, Vol. 39, No. 2, p. 14.
Clawson, M., and others. 1969. The economic impracticability of desalting sea water for large-scale agriculture, by Clawson, M., Landsberg, H. H. and Alexander, L. T.. Science, Vol. 164, No. 3884, p 114148.
Eckert, E. R. G., and Drake, R. M. 1959. Heat and mass transfer. New York, McGraw-Hill Book Co., Inc.
Engel, L., and others. 1961. The sea, by L. Engel and the editors of Life. New York, Time Inc. (Life Nature Library.)
Fofonoff, N. P. 1962. Physical properties of sea water. (In Hill, M. N., ed. The sea: ideas and observations on progress in the study of the seas. Vol. 1. Physical oceanography. New York, Interscience Publishers p. 330.)
Gordiyenko, P. A. 1960. O roli aysbergov v ledovom i termicheskom balanse pribrezhnykh vod Antarktiki[The role of icebergs in the ice and thermal balance of coastal Antarctic waters]. Problemy Arktiki i Antarktiki, No. 2, p. 1722.
Gordon, A. L., and Goldberg, R. D. 1970. Circumpolar characteristics of Antarctic waters. Antarctic Map Folio Series (New York, American Geographical Society), Folio 13.
Gow, A. J. 1963. The inner structure of the Ross Ice Shelf at Little America V, Antarctica, as revealed by deep core drilling. Union Géodésique et Géophysique Internationale. Association Internationale d’Hydrologie Scientifique. Assemblée générale de Berkeley, 19–8—31–8 1963. Commission des Neiges et des Glaces, p. 27284.
Gow, A. J. 1968. Electrolytic conductivity of snow and glacier ice from Antarctica and Greenland. Journal of Geophysical Research, Vol. 73, No. 12, p. 364349.
Heap, J. A. 1965. Antarctic pack ice. (In Hatherton, T., ed. Antarctica. London, Methuen and Co. Ltd., p. 18796.)
Hoerner, S. F. 1965. Fluid-dynamic drag. Midland Park, N.J., the author.
Keithahn, E. L. 1967. Alaska Ice, Inc. (In Sherwood, M. B., ed. Alaska and its history. Seattle, University of Washington Press, p. 17386.)
Kimon, P. M. 1957. Discussion of the paper by D. A. Argyriadis on “Modern tug design …”. Transactions of the Society of Naval Architects and Marine Engineers, Vol. 65, p. 42528.
Kollmeyer, R. D. 1966. Interim report on iceberg deterioration. U.S. Coast Guard Oceanographic Report No. 11, p. 4164.
Kraft, R. 1966. The solution of the Israeli water problem. Journal of Irreproducible Results (Ness Ziona, Israel), Vol. 15, No. 1, p. 24.
Krous, E. S., and others. 1960. Value of desalted water for irrigation, by Krous, E. S., Wagner, J. P. and Fernelius, W. A.. U.S. Dept. of the Interior. Office of Saline Water. Office of Research and Development Progress Report No. 489.
Nazarov, V. S. 1962. L’dy antarkticheskikh vod [Ice of Antarctic waters]. Rezul’taty Issledovaniy po Programme Mezhdunarodnogo Geofizicheskogo Goda. Okeanologiya. X Razdel Programmy MGG, No. 6.
New York Times . 1969. World’s largest and strongest tug is almost ready. New York Times, 21 June, p. 54.
Novick, O. 1966. Comments on “The solution of the Israeli water problem” by Kraft, R.. Journal of Irreproducible Results (Ness Ziona, Israel), Vol. 15, No. 1, p. 4.
Oak Ridge National Laboratory. 1968. Nuclear energy centers, industrial and agro-industrial complexes. Oak Ridge, Tenn., Oak Ridge National Laboratory. (UC-80-Reactor Technology, ORNL-4290.)
Overman, M. 1969. Water. New York, Doubleday and Co., Garden City.
Sverdrup, H. U., and others. 1946. The oceans, their physics, chemistry and general biology, by H. U. Sverdrup, M. W. Johnson and R. H. Fleming. New York, Prentice-Hall.
Swithinbank, C. W. M. 1969. Giant icebergs in the Weddell Sea, 1967–68. Polar Record, Vol. 14, No. 91, p. 47778.
Swithinbank, C. W. M., and Zumberge, J. H. 1965. The ice shelves. (In Hatherton, T., ed. Antarctica. London, Methuen and Co. Ltd., p. 199220.)
Todd, D. K. 1970. The water encyclopedia. Port Washington, N.Y., Water Information Center.
Tolstikov, Ye. I., ed. 1966. Atlas Antarktiki [Atlas of the Antarctic]. Moscow, Leningrad, Glavnoye Upravleniye Geodezii i Kartografii.
United Nations. 1964. Water desalination in developing countries. New York, Geneva, UN Sales Section. (UN Publication, Sales No. 64.II.B.5.)
U.S. Office of Saline Water. 1972. Federal-State feasibility study recommends prototype desalting plant in California. U.S. Dept. of the Interior News Release, OSI, 3 March 1972.
Voelker, R. P. 1972. Ships to transit the Arctic Ocean. (In Slocum, B. F., ed. Arctic logistics support technology. Proceedings of a symposium held at Hershey. Pa., November 1-14, 1971. [Washington, D.C.], Arctic Institute of North America, p. 5162.)
Water Newsletter . 1969. Low cost ground water attracts industry. Water Newsletter, Vol. 11, No. 12, 4 p.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed