Skip to main content Accessibility help
×
Home

Ice motion and driving forces during a spring ice shove on the Alaskan Chukchi coast

  • Andrew Mahoney (a1), Hajo Eicken (a1), Lewis Shapiro (a1) and Tom C. Grenfell (a2)
  • Please note a correction has been issued for this article.

Abstract

An ice shove along the Alaskan Chukchi Sea coast occurred in June 2001, affecting the communities of Barrow and Wainwright, some 150 km apart. Aerial photography before and after the event allowed measurement of ice displacement vectors near Barrow where up to 395 m of ice motion was accommodated almost entirely in discrete ridges up to 5 m high. The forces required to build these ridges are estimated at 35−62 kN m-1, and driving forces of the whole event are investigated. Most ice deformation at or near the beach coincided with local onshore winds, but the event was preceded by the compaction of pack ice in the central Chukchi Sea and the closure of the coastal flaw lead, driven by the larger-scale wind field acting over several days beforehand. Whether this acted to impart pack-ice stress to the coast or simply to create a critical fetch of consolidated ice is uncertain. The near-melting near-isothermal state of the ice may have been a complicit factor and affected the behavior of the land-fast ice. Coastal morphology and bathymetry affected the location of deformation. This study highlights the range of scales at which processes act and culminate to have implications for Arctic communities.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Ice motion and driving forces during a spring ice shove on the Alaskan Chukchi coast
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Ice motion and driving forces during a spring ice shove on the Alaskan Chukchi coast
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Ice motion and driving forces during a spring ice shove on the Alaskan Chukchi coast
      Available formats
      ×

Copyright

References

Hide All
Alestalo, J. and Häikiö, J.. 1975. Ice features and ice-thrust shore forms at Luodonselka, Gulf of Bothnia, in winter 1972/73. Fennia 144.
Anderson, R. J. 1987. Wind stress measurements over rough ice during the 1984 marginal ice zone experiment. J. Geophys. Res., 92(C7), 6933-6941.
Arya, S. P. S. 1973. Contribution of form drag on pressure ridges to the air stress on Arctic ice. J. Geophys. Res., 78(30), 7092-7099.
Banke, E.G. and Smith, S. D.. 1973. Wind stress on Arctic sea ice. J. Geophys. Res., 78(33), 7871-7883.
Banke, E.G., Smith, S. D. and Anderson, R. J.. 1980. Drag coefficients at AIDJEX from sonic anemometer measurements. International Association of Hydrological Sciences Publication 124 (Symposium at Seattle 1977 – Sea Ice Processes and Models), 430-442.
Brower, C. D. 1960. Fifty years below zero: a lifetime of adventure in the Far North. New York, Dodd, Mead Co. (in collaboration with P. J. Farrelly and L. Anson)
Dykins, J. E. 1970. Ice engineering: tensile properties of sea ice grown in a confined system. Port Hueneme, CA, Naval Civil Engineering Laboratory. (NCEL Technical Report R680)
Eicken, H., Grenfell, T. C., Perovich, D. K., Richter-Menge, J. A. and Frey, K.. 2004. Hydraulic controls of summer Arctic pack ice albedo. J. Geophys. Res., 109(C08007). (10.1029/2003JC001989).
Flato, G. M. and Hibler, W. D. III. 1995. Ridging and strength in modeling the thickness distribution of Arctic sea ice. J. Geophys. Res., 100(C9), 18,611-18,626.
Hopkins, M. A. 1994. On the ridging of intact lead ice. J. Geophys. Res., 99(C8), 16,351-16,360.
Hopkins, M. A. 1997. On-shore pile-up: a comparison between experiments and simulations. Cold Reg. Sci. Technol., 26(3), 205-214.
Hopkins, M. A., Tuhkuri, J. and Lensu, M.. 1999. Rafting and ridging of thin ice sheets. J. Geophys. Res., 104(C6), 13,605-13,613.
Hoyland, K. V and Loset, S.. 1999. Monitoring and observation of the formation of a first-year ice ridge-field. In Tuhkuri, J. and Riska, K., eds. POAC99, Proceedings of the 15th International Conference on Port and Ocean Engineering under Arctic Conditions, Espoo, Finland, August 23-27, 1999, vol. 1. Helsinki, Helsinki University of Technology, Ship Laboratory, 37-48.
Kennedy, F. E., Schulson, E. M. and Jones, D. E.. 2000. The friction coefficient of ice on ice at low sliding velocities. Philos. Mag. A, 80(5), 1093-1110.
Kovacs, A. 1997. Estimating the full-scale flexural and compressive strength of first-year sea ice. J. Geophys. Res., 102(C4), 8681-8689.
Kovacs, A. and Mellor, M.. 1974. Sea ice morphology and ice as geologic agent in the southern Beaufort Sea. In Reed, J. C. and Sater, J. E., eds. The coast and shelf of the Beaufort Sea. Arlington, VA, Arctic Institute of North America, 113-161.
Kovacs, A. and Sodhi, D. S.. 1980. Shore ice pile-up and ride-up: field observations, models, theoretical analysis. Cold Reg. Sci. Technol., 2, 209-288.
Kovacs, A. and Sodhi, D. S.. 1988. Onshore ice ridge-up and pile-up: observations from theoretical assessment. In Chen, A. T. and Leidersdorf, P., eds. Arctic coastal processes and slope protection. Reston, VA, American Society of Civil Engineers. ASCE Technical Council on Cold Regions, 108-142.
Macklin, S. A. 1983. Wind drag coefficients over first year sea ice in the Bering Sea. J. Geophys. Res., 88(C5), 2845-2852.
Parmerter, R. R. 1975. A model of simple rafting in sea ice. J. Geophys. Res., 80(15), 1948-1952.
Parmerter, R. R. and Coon, M. D.. 1972. Model of pressure ridge formation in sea ice. J. Geophys. Res., 77(33), 6565-6575.
Reimnitz, E., Barnes, P.W. and Harper, J. R.. 1990. A review of beach nourishment from ice transport of shore face materials, Beaufort Sea, Alaska. J. Coast. Res., 6(2), 439-470.
Sanderson, T.J.O. 1988. Ice mechanics: risks to offshore structures. London, Graham and Trotman.
Schwartz, J. and Weeks, W. F.. 1977. Engineering properties of sea ice. J. Glaciol., 19 (81), 499-531.
Shapiro, L. H., Metzner, R. C., Hanson, A. and Johnson, J. B.. 1984. Fast ice sheet deformation during ice-push and shore ice ride-up. In Barnes, P.W., Schell, D.M. and Reimnitz, E., eds. TheAlaskan Beaufort Sea: ecosys- tems and environments. Orlando, FL, Academic Press, 137-157.
Sodhi, D. S., Hirayama, K., Haynes, F. D. and Kato, K.. 1983. Experiments on ice ride-up and pile-up. Ann. Glaciol., 4, 266-270.
Thorndike, A. S. 1986. Kinematics of sea ice. In Untersteiner, N., ed. Geophysics of sea ice. London, etc., Plenum Press, 489-549.
Timco, G.W. and Frederking, R. M.W.. 1990. Compressive strength of sea ice sheets. ColdReg. Sci. Technol., 17 (3), 227-240.
Tucker, W. B. III, and Perovich, D. K.. 1992. Stress measurements in drifting pack ice. ColdReg. Sci. Technol., 20(2), 119-139.
Turcotte, D. L. and Schubert, G.. 1982. Geodynamics: applications of continuum physics to geological problems. New York, etc., JohnWiley and Sons.
Vaudrey, K. D. 1977. Ice engineering: study of related properties off loating sea-ice sheets and summary of elastic and viscoelastic analyses. Port Hueneme, CA, Naval Construction Battalion Center. Civil Engineering Laboratory. (Technical Report R860.)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

A correction has been issued for this article: