Skip to main content Accessibility help
×
Home

Ice Flow Over a Bump: Experiment and Numerical Simulations

  • Jacques Meyssonnier (a1)

Abstract

The flow of ice over a bump under steady-state conditions has been studied both experimentally and numerically. The experiments were performed with the ice viscometer installed at the Laboratoire de Glaciologie et Géophysique de l'Environnement du C.N.R.S. (LGGE) in Grenoble, France. The flow was observed by means of a marker network photographed at fixed time intervals. The separation of the ice down-stream of the bump and the non-linearity of the generally accepted Glen’s flow law led to the modelling of this flow using a finite-element method. The results describe the velocity and stress fields in ice moving over a bump and obeying Glen’s flow law (until now only relatively rough approximations of these fields have been given in the literature). The comparison of the observed and calculated network deformations shows that, although ice flowing over a bump does not undergo steady creep, the use of Glen’s flow law with an exponent n = 3 remains justified when simulating the flow of a glacier over its bed under steady-state conditions.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Ice Flow Over a Bump: Experiment and Numerical Simulations
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Ice Flow Over a Bump: Experiment and Numerical Simulations
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Ice Flow Over a Bump: Experiment and Numerical Simulations
      Available formats
      ×

Copyright

References

Hide All
Barnes, P. Tabor, D. Walker, J.F.C.. 1971 The friction and creep of polycrystalline ice. Proc. R. Soc London, Ser. A, 324(1557), 127155.
Bird, R.B. 1960 New variational principle for incompressible non–Newtonian flow. Phys. Fluids, 3(4), 539541.
Brepson, R. 1979 Simulated glacier sliding over an obstacle. J. Glaciol., 23(89), 143156.
Brepson, R. 1980 Numerical model of Penelope ice viscometer flows. In Tryde, P., ed. Physics and Mechanics of Ice. I.U.T.A.M. Symposium, Copenhagen, August 6—10, 1979 Berlin, etc., Springer–Verlag, 2837.
Chadbourne, B.D. Coole, R.M. Tootill, S. Walford, M.E.R.. 1975 The movement of melting ice over rough surfaces. J. Glaciol., 14(71), 287292.
Colbeck, S.C. Evans, R.J.. 1973 A flow law for temperate glacier ice. J. Glaciol., 12(64), 7186.
Dillon, H.B. Andersland, O.B.. 1967 Deformation rates of polycrystalline ice. In Oura H., ed. Physics of snow and ice: International Conference on Low Temperature Science, Sapporo 1966 Proceedings, Vol. 1. Pt. 1. Sapporo, Hokkaido University. Institute for Low Temperature Science, 313328.
Drake, L.D. Shreve, R.L.. 1973 Pressure melting and regelation of ice by round wires. Proc R. Soc London, Ser. A, 332(1588), 5183.
Duval, P. 1976 Lois du fluage transitoire ou permanent de la glace polycristalline pour divers états de contrainte. Ann. Géophys., 32(4), 335350.
Duval, P. 1981 Creep and fabrics of polycrystalline ice under shear and compression. J. Glaciol., 27(95), 129140.
Duval, P. Le Gac, H. 1980 Does the permanent creep–rate of polycrystalline ice increase with crystal size? J. Glaciol., 25(91), 151157.
Duval, P. Ashby, M.F. Anderman, I.. 1983 Rate–controlling processes in the creep of polycrystalline ice. J. Phys. Chem., 87(21), 40664074.
Friäa, A. Unpublished. Loi de Norton–Hoff généralisée en plasticité et visco plasticité. (Thèse de Doctorat d’État, Université de Paris V.I. Pierre et Marie Curie, 1979)
Glen, J.W. 1955 The creep of polycrystalline ice. Proc. R. Soe London, Ser. A, 228(1175), 519538.
Goodman, D.J. Frost, H.J. Ashby, M.F.. 1981 The plasticity of polycrystalline ice. Philos. Mag., Ser. A, 43(3), 665695.
Harrison, W.D. 1972 Temperature of a temperate glacier. J. Glaciol., 11(61), 1529.
Hooke, R.LeB. Iverson, N.R.. 1985 Experimental study of ice flow around a bump: comparison with theory. Geogr: Ann., 67A(3–4), 187197.
Iken, A. 1981 The effect of the subglacial water pressure on the sliding velocity of a glacier in an idealized numerical mode. J. Glaciol., 27(97), 407421.
Iken, A. Röthlisberger, H. , A. Flotron, A. Haeberli, W.. 1983 The uplift of Unteraargletscher at the beginning of the melt season — a consequence of water storage at the bed? J. Glaciol., 29(101), 2847.
and, P. Cliffe, K.A.. 1981 Mixed interpolation in primitive variable finite–element formulations for incompressible flow. Int. J. Numer. Methods Eng., 17(11), 16591688.
Johnson, M.W. 1960 Some variational theorems for non–Newtonian flow. Phys. Fluids, 3(6), 871878.
Jones, S.J. 1982 The confined compressive strength of polycrystalline ice. J. Glaciol., 28(98), 171177.
Kamb, W.B. 1970 Sliding motion of glaciers: theory and observation. Rev. Geophys. Space Phys., 8(4), 673728.
Lee, R.L. Gresho, P.M. Sani, R.L.. 1979 Smoothing techniques for certain primitive variable solutions of the Navier–Stokes equations. Int 7. Numer. Methods Eng., 14(12), 17851804.
Lliboutry, L. 1968 General theory of subglacial cavitation and sliding of temperate glaciers. J. Glaciol., 7(49), 2158.
Lliboutry, L. 1969 The dynamics of temperate glaciers from the detailed viewpoint. J. Glacial., 8(53), 185205.
Lliboutry, L. 1975 Loi de glissement d’un glacier sans cavitation. Ann. Géophys., 31(2), 207225.
Lliboutry, L. 1976 Physical processes in temperate glaciers. J. Glaciol., 16(74), 151158.
Lliboutry, L. 1979 Local friction laws for glaciers: a critical review and new openings. J. Glaciol., 23(89), 6795.
Lliboutry, L. 1983 Modifications to the theory of intra–glacial waterways for the case of subglacial ones. J. Glaciol., 29(102), 216226.
Lliboutry, L. Brepson, R.. 1963 Le viscosimètre à glace de Grenoble. International Association of Scientific Hydrology Publication 61 (General Assembly of Berkeley 1963 — Snow and Ice), 138143.
Lliboutry, L. Ritz, C. 1978 Écoulement permanent d’un fluide visqueux non linéaire (corps de Glen) autour d’une sphère parfaitement lisse. Ann. Géophys., 34(2), 133146.
Mellor, M. Cole, D.. 1981 Cyclic loading and fatigue in ice. Cold Reg. Sci. Technol., 4(1), 4153.
Meyssonnier, J. 1983 Écoulement de la glace sur un lit de forme simple: expérience, modélisation, paramétrisation du frottement. Paris, Centre National de la Recherche Scientifique. Laboratoire de Glaciologie et Géophysique de l’Environnement. (Publ. 438.) (Thèse de Doctorat d’État, Université de Grenoble I.)
Morris, E.M. 1976 An experimental study of the motion of ice past obstacles by the process of regelation. J. Glaciol., 17(75), 7998.
Nickell, R.E. Tanner, R.I. Caswell, B.. 1974 The solution of viscous incompressible jet and free–surface flows using finite–element methods. J. Fluid Mech., 65(1), 189206.
Nye, J.F. 1969 A calculation on the sliding of ice over a wavy surface using a Newtonian viscous approximation. Proc R. Soc London, Ser. A, 311(1506), 445467.
Nye, J.F. 1973 The motion of ice past obstacles. In Whalley E., S.J. Jones, and L.W. Gold, eds. Physics and Chemistry of Ice. Papers presented at the Symposium on the Physics and Chemistry of Ice, held in Ottawa, Canada, 14–18 August 1972 Ottawa, Royal Society of Canada, 387394.
Nye, J.F. 1976 Water flow in glaciers: jökulhlaups, tunnels and veins. J. Glaciol., 17(76), 181207.
Paterson, W.S.B. 1981 The physics of glaciers. Second edition. Oxford, etc., Pergamon Press.
Röthlisberger, H. 1972 Water pressure in intra– and subglacial channels. J. Glaciol., 11(62), 177203.
Shöji, H. Higashi, A.. 1978 A deformation mechanism map of ice. J Glaciol., 21(85), 419427.
Shreve, R.L. 1984 Glacier sliding at subfreezing temperatures. J. Glaciol., 30(106), 341347.
Steinemann, S. 1958 Flow and recrystallisation of ice. International Association of Scientific Hydrology Publication 39 (General Assembly of Rome 1954 — Snow and Ice), 449462.
Thompson, E.G. 1975 Average and complete incompressibility in the finite–element method. Int. J. Numer. Methods Eng., 9(4), 925932.
Weertman, J. 1957 On the sliding of glaciers. J. Glaciol., 3(21), 3338.
Weertman, J. 1964 The theory of glacier sliding. J. Glaciol., 5(39), 287303.
Weertman, J. 1971 In defense of a simple model of glacier sliding. J Geophys. Res., 76(26), 64856487.

Ice Flow Over a Bump: Experiment and Numerical Simulations

  • Jacques Meyssonnier (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed