Skip to main content Accessibility help
×
×
Home

Ice crystals grown from vapor onto an orientated substrate: application to snow depth-hoar development and gas inclusions in lake ice

  • Edward E. Adams (a1) and Daniel A. Miller (a1)

Abstract

A laboratory experiment was conducted in which new ice crystals were nucleated from the vapor phase onto large existing ice crystals obtained from Antarctic lake ice. Flat, smooth ice-crystal surfaces were prepared, with c axes oriented either vertically or horizontally. When these were subjected to a supersaturated vapor environment, multiple individual crystals nucleated onto the substrates adopting the same crystallographic orientation as the parent. A dominant grain-growth scenario for kinetic-growth metamorphism in snow, which in some ways is analogous to the oriented morphologies in lake ice, is hypothesized. In the lake-ice-growth scenario, optimally oriented crystals will grow at the expense of those less preferentially positioned.The proposed dominant grain-growth theory for snow is in agreement with the observed decrease in the number of grains and the proximal similarity of crystal habit in kinetic-growth metamorphism in snow. Similarly, kinetic crystal growth on the interior of gas inclusions in Antarctic lake ice will also acquire the crystallographic orientation of the substrate ice. These small-faceted interior crystals significantly influence light scattering and penetration in the lake-ice cover.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Ice crystals grown from vapor onto an orientated substrate: application to snow depth-hoar development and gas inclusions in lake ice
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Ice crystals grown from vapor onto an orientated substrate: application to snow depth-hoar development and gas inclusions in lake ice
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Ice crystals grown from vapor onto an orientated substrate: application to snow depth-hoar development and gas inclusions in lake ice
      Available formats
      ×

Copyright

References

Hide All
Adams, E. E., Priscu, J. C. and Sato, A.. 1995. Some metamorphic processes in the lake ice of the Mc Murdo Dry Valleys. Antarct. J. U.S., 30(5), Review 1995, 307309.
Adams, E. E., Vandervoort, D. C., Edens, M. Q. and Lang, R. M.. 1996. Ice grain orientation in processed snow. In Agrawal, K. C., ed. Proceedings of the International Symposium on Snow and Related Manifestations, SNOWSYMP 94, Manali, 26–28 September 1994. Manali, India, Snow and Avalanche Study Establishment, 96102.
Adams, E. E., Priscu, J. C., Fritsen, C. H., Smith, S. R. and Brackman, S. L.. 1998. Permanent ice covers of the Mc Murdo DryValley lakes, Antarctica: bubble formation and metamorphism. In Priscu, J. C., ed. Ecosystem dynamics in a polar desert: the Mc Murdo DryValleys, Antarctica. Washington, DC, American Geophysical Union, 281295. (Antarctic Research Series 72.)
Akitaya, E. 1974. Studies on depth hoar. Contrib. Inst. LowTemp. Sci., Ser. A 26.
Armstrong, R. L. 1980. An analysis of compressive strain in adjacent temperature-gradient and equi-temperature layers in a natural snow cover. J. Glaciol., 26(94), 283289.
Aufm Kampe, H. J., Weickmann, H. K. and Kelly, J. J.. 1951. The influence of temperature on the shape of ice crystals growing at water saturation. J. Meteorol., 8(3), 168174.
Colbeck, S. C. 1983a. Ice crystal morphology and growth rates at low supersaturations and high temperatures. J. Appl. Phys., 54(5), 26772682.
Colbeck, S. C. 1983b.Theory of metamorphism of dry snow. J. Geophys. Res., 88(C9), 54755482.
Fukuta, N. 1968. Some remarks on ice nucleation by metaldehyde. In International Conference on Cloud Physics, August 26–30, 1968,Toronto, Ont., Canada. Proceedings, 194198.
Gow, A. J. and Langston, D.. 1977. Growth history of lake ice in relation to its stratigraphic, crystalline and mechanical structure. CRREL Rep. 77-1.
Hallett, J. and Mason, B. J.. 1958. The influence of temperature and supersaturation on the habit of ice crystals grown from the vapour. Proc. R. Soc. London, Ser. A, 247(1251), 440453.
Hanajima, M. 1949. On the growth conditions of man-made snow. Low Temp. Sci., Ser. A 2, 2329.
Hobbs, P.V. 1974. Ice physics. Oxford, Clarendon Press.
Isono, K. and Iwai, K.. 1969. Growth mode of ice crystals in air at low pressure. Nature, 223, 11491150.
Kobayashi, T. 1957. Experimental researches on the snow crystal habit and growth by means of a diffusion cloud chamber. J. Meteorol. Soc. Jpn, 75th Anniversary, 3847.
Lamb, D. and Hobbs, P.V.. 1971. Growth rates and habits of ice crystals grown from the vapor phase. J. Atmos. Sci., 28(8), 15061509.
Langway, C. C. Jr. 1958. Ice fabrics and the universal stage. SIPRE Tech. Rep. 62.
Lock, G. S. H. 1990.The growth and decay of ice. Cambridge, etc., Cambridge University Press.
Marbouty, D. 1980. An experimental study of temperature-gradient metamorphism. J. Glaciol., 26(94), 303312.
Mason, B. J., Bryant, G.W. and van den Heuval, A. P.. 1963.The growth habits and surface structure of ice crystals. Philos. Mag., 8, 505526.
Michel, B. and Ramseier, R. O.. 1971. Classification of river and lake ice. Can. Geotech. J., 8(1), 3645.
Nakaya, U., Sato, I. and Sekido, Y.. 1938. Preliminary experiments on the artificial production of snow crystals. J. Fac. Sci., Hokkaido Imp. Univ., Sapporo, Japan, Ser. II 2, 111. (Investigations on snow 10.)
Petrenko, V. F. and Whitworth, R. W.. 1999. Physics of ice. Oxford, etc., Oxford University Press.
Priscu, J. C. and 9 others. 1998. Perennial Antarctic lake ice: an oasis for life in a polar desert. Science, 280(5372), 20952098.
Schaefer, V. J. and Cheng, R. J.. 1968. The effect of the nucleus on ice crystal structure. In International Conference on Cloud Physics, August 26–30, 1968, Toronto, Ont., Canada. Proceedings, 255259.
Sturm, M. and Benson, C. S.. 1997. Vapor transport, grain growth and depth-hoar development in the subarctic snow. J. Glaciol., 43(143), 4259.
Trabant, D. and Benson, C.. 1972. Field experiments on the development of depth hoar. Geol. Soc. Am. Mem. 135, 309322.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed