Skip to main content Accessibility help
×
Home

Glaciohydraulic supercooling: a freeze-on mechanism to create stratified, debris-rich basal ice: II. Theory

  • Richard B. Alley (a1), Daniel E. Lawson (a2), Edward B. Evenson (a3), Jeffrey C. Strasser (a4) and Grahame J. Larson (a5)...

Abstract

Simple theory supports field observations (Lawson and others, 1998 that subGlaciol water flow out of overdeepenings can cause accretion of layered, debris-bearing ice to the bases of glaciers. The large meltwater flux into a temperate glacier at the onset of summer melting can cause rapid water flow through expanded basal cavities or other flow paths. If that flow ascends a sufficiently steep slope out of an overdeepèning, the water will supercool as the pressure-melting point rises, and basal-ice accretion will occur. Diurnal, occasional or annual fluctuations in water discharge will cause variations in accretion rate, debris content of accreted ice or subsequent diagenesis, producing layers. Under appropriate conditions, net accretion of debris-bearing basal ice will allow debris fluxes that are significant in the glacier sediment budget.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Glaciohydraulic supercooling: a freeze-on mechanism to create stratified, debris-rich basal ice: II. Theory
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Glaciohydraulic supercooling: a freeze-on mechanism to create stratified, debris-rich basal ice: II. Theory
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Glaciohydraulic supercooling: a freeze-on mechanism to create stratified, debris-rich basal ice: II. Theory
      Available formats
      ×

Copyright

References

Hide All
Alley, R. B. 1991. Deforming-bed origin for southern Laurentide till sheets? J. Glaciol, 37(125), 6776.
Alley, R. B. 1996. Towards a hydrologie model for computerised ice-sheet simulations. Hydrol Processes. 10(4), 649660.
Alley, R. B., Cuffey, K. M., Evenson, E. B., Strasser, J. C., Lawson, D. E. and Larson, G. J. I.. 1997. How glaciers entrain and transport sediment at their beds: physical constraints. Quat. Sci. Rev., 16, 10171038.
Beget, J, E. 1986. Modeling the influence of till rheology on the- flow and profile of the Lake Michigan lobe, southern Laurentide ice sheet, U.S.A. J.Glaciol.,32 (1ll). 235- 241.
Boulton, G.S I976 the origin oaf Glaciolly fluted surfaces-observation and theory. J Glaciol. 17 (76), 287309.
Boulton, G. S. 1979. Processes of glacier erosion on different substrata. J. Glaciol., 23(89), 1538
Boulton, G. S. and R.C.A . Hindmarsh. 1987. Sedimenl déformation beneath glaciers: rheology and geological consequences. J. Geophys. Res., 92 (B9), 90599082.
Fleisher, P. J., Franz, J. M. and J, Gardner, A.. 1993. Bathymetry and sedimentary environments in proglaciol lakes at the eastern Bering Piedmont Glacier of Alaska. J. Ge0l Educ., 41 (3), 267274.
Hallet, B. 1979. A theoretical model of Glaciol abrasion. J. Glaciol., 23(89),3950.
Hanitz., D. and Liboutry, L.. 1983. Waterways, ire permeability at depth, and water pressures tit Glacier d’Argentière, French Alps. J. Glaciol., 29(102), 227239.
Hooke, R. LeB. 1984. On the role of mechanical energy in maintaining subglacial water conduits at atmospheric pressure. J.Glaciol,, 30 (105), 180187.
Hooke, R. LeB. 1991. Positive feedbacks associated with erosion of glacial cirques and overdeepenings. Geol. Soc. Am. Bull., 103 (8), 11041108.
Hooke R. LeB. and Pohjola, V. A.. 1994. Hydrology of a segment of a glacier situaed in an overdeepening, Storglaciâren, Sweden. J. Glaciol., 40(134), 140148.
Hooke, R. LeB., Miller, S. B. and Kohler, J.. 1988. Character of the englaciol and subglaciol drainage system in die upper pan of the ablation area of Storglaciâren, Sweden. J.Glaciol., 34(117), 228231.
Hubbard, B. 1991. Freezing-rate effects on the physical characteristics of basal ice formed by net adfreezingJ. Glaciol., 37 (127), 339347.
Iken, A. and Bindschadler, R. A.. 1986. Combined measurements of subglacial water pressure and surface velocity of Findelengletscher, Switzerland: conclusions about drainage system and sliding mechanism. J. Glaciol., 32 (110), 101119.
Iken, A.,H. Rôthlisberger, Flotron, A. and Haeberli, W.. 1983. The uplift of Alley and others: Glaciohydraulic supercooling: II Theory
Unteraargletscher at the beginning of the melt season- a consequence of water storage at the bed? J. Glaciol, 29 (101), 2847.
Iverson, N. R. 1993. Regelation of ice through debris at glacier beds: implications for sediment transport. Geology 21 (6), 559562.
Iverson, N. R. and Semmens, D. J.. 1995. Intrusion of ice into porons media by regelation: a mechanism of sediment entrainment by glaciers, J. Geophys. Res., 100 (B7), 10,219 10,230.
Kamb, B. 1987. Glacier surge mechanism based on linked cavity configuration of the basal water conduit system. J. Geophys. Res., 92 (B9),90839100.
Kamb, B. and LaChapelle, E.. 1964. Direct observation of the mechanism of glacier sliding over bedrock. J. Glaciol, 5 (38), 159- 172.
Lawson, D. E. 1986. Observations on hydraulic and thermal conditions at the bed of Matanuska Glacier, Alaska. Eidg. Teck. Hochsehule, Zurich. Versucksanst. Wasserbau, Hydrol. Glaziol. Mitt. 90, 6971.
Lawson, D. E. 1993. Glaciohydrologic and glaciohydraulic effct is on runoff and sediment yield In glacierzed basins. CRREL Monogr. 9302.
Lawson, D. E. and Kulla, J. B.. 1978. An oxygen isotope investigation of the origin of the basal zone of the Matanuska Glacier, Alaska, j.Geol., 86 (6), 673685.
Lawson, D. E., Strasser, J. C.. Evenson, E. B., Alley, R. B., Larson, G. J. and Arcone, S. A.. 1998. Glaciohydraulic supercooling: a freeze-on mechanism to create stratified, debris-rich basal ice: I, Field evidence,J.Glaciol., 44(148), 547562.
Lliboutry, L. 1983. Modifications to the theory of intraglacial waterways for the case of stubflaciol ones. J.Glaciol., 29 (102).216226.
Liboutry, L. 1993. Internal melting and ice accretion at the bottom of temperate glaciers. J.Glaciol., 39 (l3l),5064.
Metcalf, R. C. 1979. Energy dissipation during subglaciol abrasion ai Nis- qually Glacier, Washington. U.S.A. J. Glaciol., 23(89), 233- 246.
Murray, T. and G. K. C Clarke. 1995. Black-box modeling of the subglacial watersystem. J. Geaphys.Res., 100 (B7), 10, 231102245.
Nye, J. F. 1976. Flow In glaciers: jokulhlaups, tunnels and veins. J. Glaciol., 17 (76), 181- 207.
Paterson, W. S. B. 1981. The physics of glaciers. Second edition. Oxford, etc., Pergamon Press.
Robin, G. de Q. 1955. Ice movement and temperature distribution in glaciers and ice sheets. J.Glaciol., 2(18), 523532
Robin, G. de Q. 1976. Is the basal ice of a temperate glacier at the pressure melting point? J. Glaciol., 16 (74), 183196.
Robin, G. de Q. and Weertman, J.. 1973, Cyclic surging of glaciers. J.Glaciol.,12 (64),3- 18.
Rôthlisberger, H. 1968. Erosive processes whit h are likely to accentuate or reduce the bottom relief of valley glaciers. International Association of Scientific Hydrology Publication 79 (General Assembly of Bern 1967-Snow· an Ice, 8797.
Rôthlisberger, H. 1972. Water pressure in intra-and subglacial channels.,J.Glaciol., 11(62), 177203.
Rôthlisberger, H. and Lang, H.. 1987. Glacial hydrology. In Gurnell. A. M.and Clark, M. J., eds. Glacio-fluvial sediment transfer: an alpine perspective. Chichester, etc.,John Wiley and Sons. 207284.
Shreve, R. L. 1972. Movement of water in glaciers. J. Glaciol., 11 (62), 205214.
Souchez, R. A. and Lorrain, R. D., 1991. Ice composition and glacier dynamics, New York. etc., Springer-Verlag. (Springer Series In Physical Environment 8).
Strasser, E. B., Lawson, D. E.. Evenson, E. B.. J.C Gosse and Alley, R. B.. 1992. Frazil ice growth at the terminus of the Matanuska Glacier, Alaska, and its implications for sediment entrainment In glaciers and ice sheets. [Abstract] GeoL Soc Am. Abstr. Programs, 24 (3), 78.
Strasser, J. C., Lawson, D. E.. Evenson, E. B. and Larson, G. J.. 1994. Crystallographic and mesoseale analyses of basal zone ice front the terminus of the Matanuska Glacier, Alaska: evidence for basal freeze-on In an open hydrologic system. [Abstract.] Geol Soc. Am. Abstr. Programs. 26 (7). A177.
Strasser, J. C., Lawson, D. E.. Larson, G. J.. Evenson, E. B. and Alley, R. B.. 1996. Preliminary results of tritium analyses In basal ice, Matanuska Glacier, Alaska. U.S.A.: evidence for subglacial ice accretion. Ann. Glaciol 22, 126133.
Sugden, D. E. and John, B. S.. 1976. Glaciers and landscape; a geomorpholagical approach. London. Edward Arnold.
Walder J. S. 1986. Hydraulics of subglaciol cavities. J.Glaciol., 32 (112), 439445
Walder, J. S. and Fowler, A.. 1994, Channelized subglacial drainage over a deformable bed. J.Glaciol., 40(134). 315.
Walder, J. and Hallet, B.. 1979. Geometry of former subglacial water channels and cavities. J.Glaciol., 23(89), 335346.
Weertman, J. 1964. The theory of glacier sliding J.Glaciol., 5(39), 287 303.
Weertnman, J. 1972. General theory of water flow at the base of a glacier or ice sheet. Rev. Geophys. Space Phys., 10(1), 287333.

Glaciohydraulic supercooling: a freeze-on mechanism to create stratified, debris-rich basal ice: II. Theory

  • Richard B. Alley (a1), Daniel E. Lawson (a2), Edward B. Evenson (a3), Jeffrey C. Strasser (a4) and Grahame J. Larson (a5)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed