Skip to main content Accessibility help

The geodetic mass balance of Eyjafjallajökull ice cap for 1945–2014: processing guidelines and relation to climate


Mass-balance measurements of Icelandic glaciers are sparse through the 20th century. However, the large archive of stereo images available allows estimates of glacier-wide mass balance ( $\dot{B}$ ) in decadal time steps since 1945. Combined with climate records, they provide further insight into glacier–climate relationship. This study presents a workflow to process aerial photographs (1945–1995), spy satellite imagery (1977–1980) and modern satellite stereo images (since 2000) using photogrammetric techniques and robust statistics in a highly automated, open-source pipeline to retrieve seasonally corrected, decadal glacier-wide geodetic mass balances. In our test area, Eyjafjallajökull (S-Iceland, ~70 km2), we obtain a mass balance of $<![CDATA[ $ \dot{\curr B}_{\curr 1945}^{\curr 2014} \curr = -0.27 \pm 0.03\,{\rm \curr m\ w}{\rm. \curr e}{\rm.} {\rm \curr a}^{{\rm \ndash \curr 1}}$ , with a maximum and minimum of $\dot{\curr B}_{\curr 1984}^{\curr 1989} \curr = 0.77 \curr \pm 0.19\,{\rm \curr m\ \curr w}{\rm\curr . e}{\rm\curr .} {\rm\curr a}^{{\rm\curr \ndash 1}}$ and $\dot{\curr B}_{\curr 1994}^{\curr 1998}\curr = -1.94 \curr \pm 0.34\,{\rm \curr m\ w}{\rm\curr . e}{\rm\curr .} {\rm \curr a}^{{\rm\curr \ndash 1}}$ , respectively, attributed to climatic forcing, and $\dot{\curr B}_{\curr 2009}^{\curr 2010} \curr = -3.39{\rm \;} \curr \pm {\rm \;} \curr 0.43\,{\rm \curr m\ w}{\rm\curr . e}{\rm\curr .} {\rm\curr a}^{{\rm\curr \ndash 1}}$ , mostly caused by the April 2010 eruption. The reference-surface mass balances correlate with summer temperature and winter precipitation, and linear regression accounts for 80% of the mass-balance variability, yielding a static sensitivity of mass balance to summer temperature and winter precipitation of − 2.1 ± 0.4 m w.e.a–1K–1 and 0.5 ± 0.3 m w.e.a–1 (10%)–1, respectively. This study serves as a template that can be used to estimate the mass-balance changes and glaciers' response to climate.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The geodetic mass balance of Eyjafjallajökull ice cap for 1945–2014: processing guidelines and relation to climate
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The geodetic mass balance of Eyjafjallajökull ice cap for 1945–2014: processing guidelines and relation to climate
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The geodetic mass balance of Eyjafjallajökull ice cap for 1945–2014: processing guidelines and relation to climate
      Available formats
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Correspondence: Joaquín M. C. Belart <>
Hide All
Aðalgeirsdóttir, G, Guðmundsson, GH and Björnsson, H (2000) The response of a glacier to a surface disturbance: a case study on Vatnajökull ice cap, Iceland. Ann. Glaciol., 31, 104110
Aðalgeirsdóttir, G and 7 others (2011) Modelling the 20th and 21st century evolution of Hoffellsjökull glacier, SE-Vatnajökull, Iceland. Cryosphere, 5(4), 961975 (doi: 10.5194/tc-5-961-2011)
Ágústsson, H, Hannesdóttir, H, Thorsteinsson, T, Pálsson, F and Oddsson, B (2013) Mass balance of Mýrdalsjökull ice cap accumulation area and comparison of observed winter balance with simulated precipitation. Jökull, 63, 91104
Bahr, DB, Pfeffer, WT, Sassolas, C and Meier, MF (1998) Response time of glaciers as a function of size and mass balance: 1. Theory. J. Geophys. Res.-Solid Earth, 103(B5), 97779782
Barrand, NE, Murray, T, James, TD, Barr, SL and Mills, JP (2009) Optimizing photogrammetric DEMs for glacier volume change assessment using laser-scanning derived ground-control points. J. Glaciol., 55(189), 106116
Belart, JMC and 9 others (2017) Winter mass balance of Drangajökull ice cap (NW Iceland) derived from satellite sub-meter stereo images. Cryosphere, 11(3), 15011517 (doi: 10.5194/tc-11-1501-2017)
Bengtsson, L and 22 others (2017) The HARMONIE–AROME model configuration in the ALADIN–HIRLAM NWP system. Mon. Weather Rev., 145(5), 19191935 (doi: 10.1175/MWR-D-16-0417.1)
Berthier, E and 10 others (2014) Glacier topography and elevation changes derived from Pléiades sub-meter stereo images. Cryosphere, 8(6), 22752291 (doi: 10.5194/tc-8-2275-2014)
Berthier, E, Cabot, V, Vincent, C and Six, D (2016) Decadal region-wide and glacier-wide mass balances derived from multi-temporal ASTER satellite digital elevation models. Validation over the Mont-Blanc area. Front. Earth Sci., 4 (doi: 10.3389/feart.2016.00063)
Bindschadler, R and Vornberger, P (1998) Changes in the West Antarctic ice sheet since 1963 from declassified satellite photography. Science, 279(5351), 689692
Björnsson, H (2003) Subglacial lakes and jokulhlaups in Iceland. Glob. Planet. Change, 35(3–4), 255271
Björnsson, H, Pálsson, F, Guðmundsson, MT and Haraldsson, HH (1998) Mass balance of western and northern Vatnajökull, Iceland, 1991–1995. Jökull, 45, 3538
Björnsson, H, Pálsson, F, Sigurðsson, O and Flowers, GE (2003) Surges of glaciers in Iceland. Ann. Glaciol., 36, 8290
Björnsson, H and 8 others (2013) Contribution of Icelandic ice caps to sea level rise: trends and variability since the Little Ice Age. Geophys. Res. Lett., 40, 15 (doi: 10.1002/grl.50278)
Brun, F, Berthier, E, Wagnon, P, Kääb, A and Treichler, D (2017) A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci., 10(9), 668 (doi: 10.1038/ngeo2999)
Cogley, JG and 10 others (2011) Glossary of glacier mass balance and related terms, IHP-VII Technical Documents in Hydrology No. 86, IACS Contribution No. 2, UNESCO-IHP, Paris. 114.
Crochet, P and Jóhannesson, T (2011) A dataset of daily temperature in Iceland for the period 1949–2010. Jökull, 61, 117
Crochet, P and 6 others (2007) Estimating the spatial distribution of precipitation in Iceland using a linear model of orographic precipitation. J. Hydrometeorol., 8(6), 12851306.
Cuffey, KM and Paterson, WSB (2010) The physics of glaciers. Academic Press Inc, Amsterdam
Dall, J (2003) Cross-calibration of interferometric SAR data. Sonar Navig. IEE Proc. – Radar, 150(3), 177183 (doi: 10.1049/ip-rsn:20030448)
Deutsch, CV (1998) GSLIB – Geostatistical Software Library and User's Guide.
De Woul, M and Hock, R (2005) Static mass-balance sensitivity of Arctic glaciers and ice caps using a degree-day approach. Ann. Glaciol., Vol 42 2005 42, 217224.
Dragosics, M and 7 others (2016) Insulation effects of Icelandic dust and volcanic ash on snow and ice. Arab. J. Geosci., 9(2), 126 (doi: 10.1007/s12517-015-2224-6)
Elsberg, DH, Harrison, WD, Echelmeyer, KA and Krimmel, RM (2001) Quantifying the effects of climate and surface change on glacier mass balance. J. Glaciol., 47(159), 649658
Engelhardt, M, Schuler, TV and Andreassen, LM (2015) Sensitivities of glacier mass balance and runoff to climate perturbations in Norway. Ann. Glaciol., 56(70), 7988 (doi: 10.3189/2015AoG70A004)
Fieber, KD and 5 others (2018) Rigorous 3D change determination in Antarctic Peninsula glaciers from stereo WorldView-2 and archival aerial imagery. Remote Sens. Environ., 205(Supplement C), 1831 (doi: 10.1016/j.rse.2017.10.042)
Fischer, M, Huss, M and Hoelzle, M (2015) Surface elevation and mass changes of all Swiss glaciers 1980–2010. Cryosphere, 9(2), 525540 (doi: 10.5194/tc-9-525-2015)
Gascoin, S and 6 others (2017) Evaluation of MODIS Albedo Product over Ice Caps in Iceland and Impact of Volcanic Eruptions on Their Albedo. (doi: 10.3390/rs9050399)
Guðmundsson, S and 7 others (2011) Response of Eyjafjallajökull, Torfajökull and Tindfjallajökull ice caps in Iceland to regional warming, deduced by remote sensing. Polar Res., 30(7282) (doi: 10.3402/polar.v30i0.7282)
Guðmundsson, MT and 12 others (2012) Ash generation and distribution from the April-May 2010 eruption of Eyjafjallajökull, Iceland. Sci. Rep., 2, 572 (doi: 10.1038/srep00572)
Harrison, WD, Elsberg, DH, Echelmeyer, KA and Krimmel, RM (2001) On the characterization of glacier response by a single time-scale. J. Glaciol., 47(159), 659664
Hirschmuller, H (2008) Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell., 30(2), 328341 (doi: 10.1109/TPAMI.2007.1166)
Höhle, J and Höhle, M (2009) Accuracy assessment of digital elevation models by means of robust statistical methods. ISPRS J. Photogramm. Remote Sens., 64(4), 398406 (doi: 10.1016/j.isprsjprs.2009.02.003)
Huss, M (2013) Density assumptions for converting geodetic glacier volume change to mass change. Cryosphere, 7(3), 877887 (doi: 10.5194/tc-7-877-2013)
Huss, M and Hock, R (2018) Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change, 8(2), 135140 (doi: 10.1038/s41558-017-0049-x)
Huss, M, Hock, R, Bauder, A and Funk, M (2010) 100-year mass changes in the Swiss Alps linked to the Atlantic Multidecadal Oscillation. Geophys. Res. Lett., 37, L10501 (doi: 10.1029/2010GL042616)
Huss, M, Hock, R, Bauder, A and Funk, M (2012) Conventional versus reference-surface mass balance. J. Glaciol., 58(208), 278286 (doi: 10.3189/2012JoG11J216)
James, TD, Murray, T, Barrand, NE and Barr, SL (2006) Extracting photogrammetric ground control from lidar DEMs for change detection. Photogramm. Rec., 21(116), 312328
Jóhannesson, T, Sigurðsson, O, Laumann, T and Kennett, M (1995) Degree-day glacier mass-balance modelling with applications to glaciers in Iceland, Norway and Greenland. J. Glaciol., 41(138), 345358 (doi: 10.3189/S0022143000016221)
Jóhannesson, T, Björnsson, H, Pálsson, F, Sigurðsson, O and Þorsteinsson, Þ (2011) LiDAR mapping of the Snæfellsjökull ice cap, western Iceland. Jökull, 61, 1932
Jóhannesson, T and 7 others (2013) Ice-volume changes, bias estimation of mass-balance measurements and changes in subglacial lakes derived by lidar mapping of the surface of Icelandic glaciers. Ann. Glaciol., 54(63), 6374 (doi: 10.3189/2013AoG63A422)
Korona, J, Berthier, E, Bernard, M, Remy, F and Thouvenot, E (2009) SPIRIT. SPOT 5 stereoscopic survey of Polar Ice: Reference Images and Topographies during the fourth International Polar Year (2007–2009). ISPRS J. Photogramm. Remote Sens., 64, 204212 (doi: 10.1016/j.isprsjprs.2008.10.005)
Lacroix, P (2016) Landslides triggered by the Gorkha earthquake in the Langtang valley, volumes and initiation processes. Earth Planets Space, 68(1), 46 (doi: 10.1186/s40623-016-0423-3)
Lambrecht, A and Kuhn, M (2007) Glacier changes in the Austrian Alps during the last three decades, derived from the new Austrian glacier inventory. Ann. Glaciol., 46, 177184
Leclercq, PW and Oerlemans, J (2012) Global and hemispheric temperature reconstruction from glacier length fluctuations. Clim. Dyn., 38(5–6), 10651079
Magnússon, E (2003) Airborne SAR data from S-Iceland: analyses, DEM improvements and glaciological application. (MSc thesis, Dep. Phys. Univ. Icel)
Magnússon, E, Belart, JMC, Pálsson, F, Ágústsson, H and Crochet, P (2016) Geodetic mass balance record with rigorous uncertainty estimates deduced from aerial photographs and lidar data – case study from Drangajökull ice cap, NW Iceland. Cryosphere, 10(1), 159177 (doi: 10.5194/tc-10-159-2016)
Marzeion, B, Cogley, JG, Richter, K and Parkes, D (2014) Attribution of global glacier mass loss to anthropogenic and natural causes. Science, 345(6199), 919921
Mölg, N and Bolch, T (2017) Structure-from-motion using historical aerial images to analyse changes in glacier surface elevation. Remote Sens., 9(10), 1021 (doi: 10.3390/rs9101021)
Möller, R and 7 others (2014) MODIS-derived albedo changes of Vatnajökull (Iceland) due to tephra deposition from the 2004 Grímsvötn eruption. Int. J. Appl. Earth Obs. Geoinf., 26, 256269 (doi: 10.1016/j.jag.2013.08.005)
Nawri, N, Pálmason, B, Petersen, GN, Björnsson, H and Þorsteinsson, ÁÞ (2017) The ICRA atmospheric reanalysis project for Iceland. Icel. Meteorol. Off., VÍ 2017-005, 139
Noh, M-J and Howat, IM (2015) Automated stereo-photogrammetric DEM generation at high latitudes: Surface Extraction with TIN-based Search-space Minimization (SETSM) validation and demonstration over glaciated regions. GIScience Remote Sens., 52(2), 198217 (doi: 10.1080/15481603.2015.1008621)
Nuimura, T, Fujita, K, Yamaguchi, S and Sharma, RR (2012) Elevation changes of glaciers revealed by multitemporal digital elevation models calibrated by GPS survey in the Khumbu region, Nepal Himalaya, 1992–2008. J. Glaciol., 58(210), 648656 (doi: 10.3189/2012JoG11J061)
Nuth, C and Kääb, A (2011) Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere, 5(1), 271290 (doi: 10.5194/tcd-4-2013-2010)
Oddsson, B and 5 others (2016) Subglacial lava propagation, ice melting and heat transfer during emplacement of an intermediate lava flow in the 2010 Eyjafjallajökull eruption. Bull. Volcanol., 78(7), 48 (doi: 10.1007/s00445-016-1041-4)
Oerlemans, J and Reichert, BK (2000) Relating glacier mass balance to meteorological data by using a seasonal sensitivity characteristic. J. Glaciol., 46(152), 16
Ohmura, A (2011) Observed mass balance of mountain glaciers and Greenland ice sheet in the 20th century and the present trends. Surv. Geophys., 32(4–5), 537554
Pálsson, F and 6 others (2012) Mass and volume changes of Langjökull ice cap, Iceland, ~1890 to 2009, deduced from old maps, satellite images and in situ mass balance measurements. Jökull, 62, 8196
Papasodoro, C, Berthier, E, Royer, A, Zdanowicz, C and Langlois, A (2015) Area, elevation and mass changes of the two southernmost ice caps of the Canadian Arctic Archipelago between 1952 and 2014. Cryosphere, 9(4), 15351550 (doi: 10.5194/tc-9-1535-2015)
Pierrot Deseilligny, M and Clery, I (2011) Apero, an open source bundle adjustment software for automatic calibration and orientation of set of images. ISPRS – Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., 3816, 269276 (doi: 10.5194/isprsarchives-XXXVIII-5-W16-269-2011)
Porter, C and 27 others (2018) ArcticDEM. (doi: 10.7910/DVN/OHHUKH)
Raup, B and 5 others (2007) The GLIMS geospatial glacier database: a new tool for studying glacier change. Glob. Planet. Change, 56(1–2), 101110
Raup, BH and 20 others (2014) Quality in the GLIMS glacier database. In Kargel, JS, Leonard, GJ, Bishop, MP, Kääb, A and Raup, BH eds. Global land ice measurements from space. Springer, Berlin, Heidelberg, 163182 (doi: 10.1007/978-3-540-79818-7_7)
Rolstad, C, Haug, T and Denby, B (2009) Spatially integrated geodetic glacier mass balance and its uncertainty based on geostatistical analysis: application to the western Svartisen ice cap, Norway. J. Glaciol., 55(192), 666680
Rupnik, E, Daakir, M and Pierrot Deseilligny, M (2017) Micmac – a free, open-source solution for photogrammetry. Open Geospatial Data Softw. Stand., 2, 14 (doi: 10.1186/s40965-017-0027-2)
Sakai, A and Fujita, K (2017) Contrasting glacier responses to recent climate change in high-mountain Asia. Sci. Rep., 7(1), 13717 (doi: 10.1038/s41598-017-14256-5)
Schuler, TV and 6 others (2005) Distributed mass-balance and climate sensitivity modelling of Engabreen, Norway. Ann. Glaciol., Vol 42 2005 42, 395401.
Shean, DE and 6 others (2016) An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery. ISPRS J. Photogramm. Remote Sens., 116, 101117 (doi: 10.1016/j.isprsjprs.2016.03.012)
Sigmundsson, F and 15 others (2010) Intrusion triggering of the 2010 Eyjafjallajökull explosive eruption. Nature, 468(7322), 426 (doi: 10.1038/nature09558)
Sigurðsson, O (1998) Glacier variations in Iceland 1930–1995 – from the database of the Iceland Glaciological Society. Jökull, 45, 325
Spriggs, RM (1966) The calibration of Military Cartographic Cameras, Technical Note. Wright-Patterson Air Force Base Ohio USA.
Surazakov, AB and Aizen, VB (2010) Positional accuracy evaluation of declassified Hexagon KH-9 mapping camera imagery. Photogramm. Eng. Remote Sens., 76(5), 603608
Thibert, E, Blanc, R, Vincent, C and Eckert, N (2008) Glaciological and volumetric mass-balance measurements: error analysis over 51 years for Glacier de Sarennes, French Alps. J. Glaciol., 54(186), 522532
Vaughan, DG and 13 others (2013) Observations: Cryosphere. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Willis, MJ, Melkonian, AK, Pritchard, ME and Rivera, A (2012) Ice loss from the Southern Patagonian Ice Field, South America, between 2000 and 2012. Geophys. Res. Lett., 39(L17501), 16 (doi: 10.1029/2012GL053136)
Willis, MJ, Herried, BG, Bevis, MG and Bell, RE (2015) Recharge of a subglacial lake by surface meltwater in northeast Greenland. Nature, 518(7538), 223227
Zemp, M and 37 others (2015) Historically unprecedented global glacier decline in the early 21st century. J. Glaciol., 61(228), 745762 (doi: 10.3189/2015JoG15J017)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Belart et al. supplementary material
Belart et al. supplementary material 1

 Word (3.2 MB)
3.2 MB
Supplementary materials

Belart et al. supplementary material
Belart et al. supplementary material 2

 Unknown (13.0 MB)
13.0 MB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed