Skip to main content Accessibility help

Frazil-Ice Nucleation by Mass-Exchange Processes at the Air-Water Interface

  • T. E. Osterkamp (a1)


The physical requirements for proposed frazil-ice nucleation theories are reviewed in the light of recent observations on frazil-ice formation. It is concluded that spontaneous heterogeneous nucleation in a thin supercooled surface layer of water is not a viable mechanism for frazil-ice nucleation. Efforts to observe crystal multiplication by border ice have not been successful. The mass-exchange mechanism proposed by Osterkamp and others (1974) has been generalized to include splashing, wind spray, bubble bursting, evaporation, and material that originates at a distance from the stream (e.g. snow, frost, ice particles, cold organic material, and cold soil particles). It is shown that these mass-exchange processes can account for frazil-ice nucleation under a wide range of physical and meteorological conditions. It is suggested that secondary nucleation may be responsible for large frazil-ice concentrations in streams and rivers.


Nucléation de la glace du “frazil” par des processus d'échanges de masses a léinterface air en eau. On a revu les conditions physiques requises par les théories pour la nucleation de la glace du “frazil” à la lumière de récentes observations sur cette formation. On en conclue qu'une nucléation hétérogène spontanée dans un niveau d'eau superficiel mince en surfusion n'est pas un mécanisme viable pour la nucleation de la glace du frazil. Les efforts pour observer la multiplication des cristaux par de la glace de bordure n'ont pas eu de succès. Le mécanisme d'échanges de masses proposé par Osterkamp et a utres (1974) a été généralisé de manière à inclure l'éclaboussement, la pulvérisation, l'échappement des bulles, l'évaporation et les matières dont I'origine se trouve à une certaine distance du courant (par exemple, neige, givre, particules de glace, matière organique froide et particles de terre froides). On montre que ces processus d'échanges de masses peuvent rendre compte de la nucléation du frazil dans une large gamme de conditions physiques et météorologiques. On suggère qu'une nucl'ation secondaire peut être responsable des grandes concentrations de glace de frazil dans les cours d'eau et rivières.


Keimbildung von Sulzeis durch Massenaustauschuorgänge an der Grenzfläche zwischen. Luft und Wasser. Die physikalischen Bedingungen fur vorgeschla gene Theorien zur Keimbildung von Sulzeis werden im Lichte neuer Beobachtungen der Entstehung von Sulzeis überprüft. Es ergibt sich, dass spontane Fremdkeimbildung in einer dünnen, unterkühlten Oberflächenschicht von Wasser kein ausreichender Mechanismus für die Keimbildung von Sulzeis ist. Bemühungen, Kristallvermehrungen durch Randeis zu beobachten, waren erfolglos. Der von Osterkamp u. a. (1974) vorgeschlagene Mechanismus des Massen-austausches wurde verallgemeinert, um Spritzen, Zersprühen durch Wind, Bersten von Blasen, Verdunstung sowie Stoffe ein zubeziehen, die in einiger Entfernung vom Bach entstehen (z.B. Schnee, Reif, Eisteilchen, kalte orga nische Stoffe und kalte Bodenteilchen). Es wird gezeigt, dass diese Massenaustauschvorgänge die Keimbildung van Sulzeis unter mannigfachen physikalischen und meteorologischen Bedingungen erklären lassen. Man kann annehmen, dass sekundäre Keimbildung zu grossen Ansammlungen von Sulzeis in Bächen und Flüssen führt.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Frazil-Ice Nucleation by Mass-Exchange Processes at the Air-Water Interface
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Frazil-Ice Nucleation by Mass-Exchange Processes at the Air-Water Interface
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Frazil-Ice Nucleation by Mass-Exchange Processes at the Air-Water Interface
      Available formats



Hide All
Al'tberg, V. Ya. 1938[a]. Otsentrakh ili yadrakh kristallizatsii vody. Meteorologiya Gidrologiya, 1938, No. 3. p. 312. [English translation: On centens or nuclei of water crystallization. U.S. Cold Regions Research and Engineering Laboratory. Draft Translation TL 294.]
Al’tberg, V. Ya. 1938[b]. Twenty years of work in the domain of underwater ice formation (1915-1935). Union Intemationale de Géodésie et de Ghéphysique. Association Intemationale d’ Hydrologie Scientifique. Sixième assembliée général à Edimbourg, 936. Bulletin No. 23, p. 373407.
Al’tberg, V. Ya., and Lavrov, V. 1939. Experiments on the crystallization of water. II. Acta Physicochimica U.R.S.S., Vol. 11, No. 2, p. 287-90.
Arakawa, K. 1954. Studies on the freezing of water. 11. Formation of disccrystals. Journal of the Faculty of Science, Hokkaido Ulliuersitv, Ser. 2, Vol. 4, No. 5, p. 311-39.
Arakawa, K. 1956. Exper imental stulie, on freezing of water. Union Géodisique et Geacute;odésique Intemationale. Associatioll lntematiollale d ‘ Hydrologie Scicntifique. Assemblée généra le de Rome 1954, Torn. 4, p. 474-77. (Publ ication No. 39 de l'Associa tion I nternationale d ‘H ydrologie Scientifique.)
Blanchard, D. C. 1953. Electrification of the a tmosphere by particles from bubbles in the sea. Progress in Oceallograplry, Vol. I, p. 71202.
Carstens, T. 1966. Experimen ts with supercooling and ice formation in flowing water. Geofysiske Publikasjoller, Vol. 26, No. 9.
Chalmers, B., and Williamson, R. B. 1965. Crystal multiplication with out nucleation. Science, Vol. 148, No. 3676, P 17 1718.
Devik, O. 1944. Ice forma tion in lakes and rivers. Geographical Journal, Vol. 103, No. 5, p. 193203.
Devik, O. 1949. Freezing water and supercooling, anchor ice and frazil ice. Journal of Glaciology, Vol. 1, No. 6, p. 307-09.
Dorsey, N. E. 1948. The freezing of supercooled water. Transactions of the American Philosophical Society, Vol. 38, Pt. 3, p. 247328.
Estrin, J. 1970. Secondary Ilucleation of ice ill a suspension of crystals in turbulent, cylindrical Couelle flow. Washing ton, D.C., U.S. Dept. of the Interior. Office of Saline water. (Research and Development Progress Report No. 494.)
Flemings, M. C. 1974. The solidification of castings. Scientijic American, Vol. 231, No. 6, p. 8895.
Garabedian, H., and Strickland-Constable, R. F. 1974. Collision breeding of ice crystals. Journal of Crystal Growth, Vol. 22, No. 3, p. 188-92.
Hill, R. H. 1972. Laboratory measuremen t of heat transfer and thermal structure near an air-water interface. Journal of Plrysical Oceanograplry, Vol. 2, No. 2, p. 190-98.
Hobbs, P. V., and Alkezweeny, A. J. 1969. The fragmentation of freezing water droplets in free fall. Journal of the Atmosphzeric Sciences, Vol. 25, No. 5, p. 881-88.
Katsaros, K. B. 1973. Supercooling at the surface of an Arctic lead. Journal of Physical Oceanography, Vol. 3, No. 4, p. 482-85.
Katsaros, K. B., and Liu, W. T. 1974. Supercooling a t a free salt water surface in the laboratory. Journal of Physical Oceanography, Vol. 4, No. 4, p. 654-58.
Kumai, M., and Itagaki, K. 1956. Cinematographic study of ice crystal formation in water. Union Géodésique et Géoplzysique Internationale. Association Internationale d'Hydrologie Scientijique. Assemblée générale de Rome 1954, Tom. 4, p. 463-67. (Publication No. 39 de l'Association Interna t iona le d'Hyd rologie Scienti fique.)
MacIntyre, F. 1974. The top millimeter o f the ocean. Scientijic American, Vol. 230, No. 5, p. 6277.
Mason, B. J. 1971. The physics of clouds. Oxford, Clarendon Press. (Oxford Monographs on Meteorolog y.)
Michel, B. 1967. From the nucleation of ice crystals in clouds to the formation of frazil ice in rivers. (In Oura, H., ed. Physics of snow and ice : international confijerence on low temperature science.1966…. Proceedings, Vol. I, P t. I. [Sapporo], Institute of Low Temperature Science, Hokka ido Univers ity, p. 129-36.)
Michel, B. 1971. Winter regime of rivers and lakes. U.S. Cold Regions Research and Engineering Laboratory. Cold regions science and engineering. Ha novel', N.H., Pt. Ill, Sect. B 1 a.
Michel, B., and Haniey, T.O'D. 1975. Mechanisms of ice growth a t the ice-water-air interface in a laboratory tank. Canada. National Research Council. Associate Committee on Geotechnical Research. Technical Memorandum No. 114, p. 96103.
Monahan, E. C. 1968. Sea spray as a function of low elevation wind speed. Journal of Geophysical Research, Vol. 73, No. 4, p. 11 2737.
Osterkamp, T. E., and Gilfilian, R. E. 1975. Nucleation characteristics of stream water and frazil ice nucleation. Water Resources Research, Vol. 11, No. 6, p. 926-28.
Osterkamp, T. E., and others. 1974. Detection of airborne ice crystals near a supercooled stream, by T. E. Osterkamp, T. Oh take and D. C. Warniment. Journal of the Atmospheric Sciences, Vol. 31, No. 5, p. I 464-D5.
Piotrovich, V. V. 1956. l'nutrivod noye obrazovaniye l'da. Priroda, 1956, No. 9, p. 9495. [English translation: Formatioll of depth-ice. Translated from the Russian by E. S. Hope. Ottawa, Defence Research Board. Directorate of Scientific Information Service, 1956. (T 235 R).]
Schaefer, V. J. 1950. The formation of frazil and anchor ice in cold water. Transactions. American Geoplrysical Union, Vol. 31, No. 6, p. 885-93.
Schnell, R. C. 1974. Biogenic sources if atmospheric ice nuclei. Laramie, Wyoming, University of Wyoming. Dept. of Atmospheric Resources. (Report No. AR III.)
Schnell, R. C., and Vali, G. 1972. Atmospheric ice nuclei from decomposing vegetation. Nature, Vol. 236, o. 5343, p. I 63-D5.
Tesaker, E. 1966. Investigation of ice problems in rivers. Technical University of Norway River and Harbour Research Laboratory. Bulletin (Trondheim), No. 8E.
Thijisen, H. A. C., and others. 1968. Heterogeneous primary nucleation of ice in water and aqueous solutions, by H. A. C. Thijssen, M. A. G. Vorstman and J. A. Roels. Journal of Crystal Growth, Vol. 3, No. 4, p. 355-59.
Williamson, R. B. Unpublished. The morphology of ice solidified in undcrcooled water. [Ph.D. thesis, Harvard University, Cambridge, Mass., 1964.]

Frazil-Ice Nucleation by Mass-Exchange Processes at the Air-Water Interface

  • T. E. Osterkamp (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed