Skip to main content Accessibility help
×
Home

First surface velocity maps for glaciers of Monte Tronador, North Patagonian Andes, derived from sequential Pléiades satellite images

  • L. Ruiz (a1), E. Berthier (a2), M. Masiokas (a1), P. Pitte (a1) and R. Villalba (a1)...

Abstract

We apply cross-correlation to Pléiades satellite images to generate accurate, high-resolution monthly surface velocity maps of Monte Tronador glaciers between March and June 2012. Measured surface displacements cover periods as short as 19 days, with a precision of ∼0.58 m (11 m a−1). These glaciers follow a radial flow pattern, with maximum surface speeds of ∼390 m a−1 associated with steep icefalls. The lower reaches of the debris-covered tongues of Verde and Casa Pangue glaciers are almost stagnant, whereas Ventisquero Negro, another debris-covered glacier, shows acceleration at the front due to calving into a proglacial lake. Low-elevation debris-covered glacier tongues show increasing velocities at the beginning of the accumulation season, whereas higher-elevation, clean-ice tongues reduce their speed during this period. This contrasting behavior is probably in response to an increase in water input to the subglacial system from winter rainfall events at low elevations and a decrease in meltwater production at higher elevations. These sequential velocity maps can help to identify the controls on glacier surface velocity, aid in the delimitation of ice divides and could also contribute to more realistic calibration of ice-flux-mass–balance models in this glacierized area.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      First surface velocity maps for glaciers of Monte Tronador, North Patagonian Andes, derived from sequential Pléiades satellite images
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      First surface velocity maps for glaciers of Monte Tronador, North Patagonian Andes, derived from sequential Pléiades satellite images
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      First surface velocity maps for glaciers of Monte Tronador, North Patagonian Andes, derived from sequential Pléiades satellite images
      Available formats
      ×

Copyright

Corresponding author

Correspondence: Lucas Ruiz lruiz@mendoza-conicet.gob.ar

References

Hide All
Bartholomaus, TC, Anderson, RS and Anderson, SP (2008) Response of glacier basal motion to transient water storage. Nature Geosci., 1(1), 3337 (doi: 10.1038/ngeo.2007.52)
Berthier, E and Vincent, C (2012) Relative contribution of surface mass balance and ice flux changes to the accelerated thinning of Mer de Glace, French Alps, over 1979–2008. J. Glaciol., 58(209), 501512 (doi: 10.3189/2012JoG11J083)
Berthier, E, Raup, B and Scambos, T (2003) New velocity map and mass-balance estimate of Mertz Glacier, East Antarctica, derived from Landsat sequential imagery. J. Glaciol., 49(167), 503511 (doi: 10.3189/172756503781830377)
Berthier, E and 7 others (2005) Surface motion of mountain glaciers derived from satellite optical imagery. Remote Sens. Environ., 95(1), 1428 (doi: 10.1016/j.rse.2004.11.005)
Berthier, E and 10 others (2014) Glacier topography and elevation changes derived from Pléiades sub-meter stereo images. Cryosphere, 8(6), 22752291 (doi: 10.5194/tc-8-2275-2014)
Bindschadler, R and Scambos, TA (1991) Satellite-image-derived velocity field of an Antarctic ice stream. Science, 252, 242246
Bown, F (2004) Cambios climáticos en la Región de Los Lagos y respuestas recientes del Glaciar Casa Pangue (41°08′S). (Memoria de Magister en Geografía, Universidad de Chile)
Bown, F and Rivera, A (2007) Climate changes and recent glacier behaviour in the Chilean Lake District. Global Planet. Change, 59(1–4), 7986 (doi: 10.1016/j.gloplacha.2006.11.015)
Carrasco, JF, Casassa, G and Quintana, J (2005) Changes of the 0°C isotherm and the equilibrium line altitude in central Chile during the last quarter of the 20th century/Changements de l’isotherme 0°C et de la ligne d’équilibre des neiges dans le Chili central durant le dernier quart du 20ème siècle. Hydrol. Sci. J., 50(6), 933948 (doi: 10.1623/hysj.2005.50.6.933)
Carrasco, JF, Osorio, R and Casassa, G (2008) Secular trend of the equilibrium-line altitude on the western side of the southern Andes, derived from radiosonde and surface observations. J. Glaciol., 54(186), 538550 (doi: 10.3189/002214308785837002)
Condom, T, Coudrain, A, Sicart, JE and Théry, S (2007) Computation of the space and time evolution of equilibrium-line altitudes on Andean glaciers (10°N–55°S). Global Planet. Change, 59(1–4), 189202 (doi: 10.1016/j.gloplacha.2006.11.021)
Cuffey, KM and Paterson, WSB (2010) The physics of glaciers, 4th edn. Academic Press, Amsterdam
Delacourt, C and 7 others (2007) Remote-sensing techniques for analysing landslide kinematics: a review. Bull. Soc. Géol. Fr., 178(2) (doi: 10.2113/gssgfbull.178.2.89)
Farinotti, D, Corr, H and Gudmundsson, GH (2013) The ice thickness distribution of Flask Glacier, Antarctic Peninsula, determined by combining radio-echo soundings, surface velocity data and flow modelling. Ann. Glaciol., 54(63), 1824 (doi: 10.3189/2013AoG63A603)
Garreaud, RD (2009) The Andes climate and weather. Adv. Geosci. 22(22), 311
Gleyzes, MA, Perret, L and Kubik, P (2012) Pléiades system architecture and main performances. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., 39, B1
Heid, T and Kääb, A (2012) Repeat optical satellite images reveal widespread and long term decrease in land-terminating glacier speeds. Cryosphere, 6, 467478 (doi: 10.5194/tc-6-467-2012)
Hock, R (1999) A distributed temperature-index ice- and snowmelt model including potential direct solar radiation. J. Glaciol., 45(149), 101111
Höhle, J and Höhle, M (2009) Accuracy assessment of digital elevation models by means of robust statistical methods. ISPRS J. Photogramm. Remote Sens., 64(4), 398406 (doi: 10.1016/j.isprsjprs.2009.02.003)
Hooke, RLeB, Calla, P, Holmlund, P, Nilsson, M and Stroeven, A (1989) A 3 year record of seasonal variations in surface velocity, Storglaciären, Sweden. J. Glaciol., 35(120), 235247
Iken, A and Bindschadler, RA (1986) Combined measurements of subglacial water pressure and surface velocity of Findelengletscher, Switzerland: conclusions about drainage system and sliding mechanism. J. Glaciol., 32(110), 101119
Iken, A and Truffer, M (1997) The relationship between subglacial water pressure and velocity of Findelengletscher, Switzerland, during its advance and retreat. J Glaciol, 43(144), 328338
Joughin, I (2002) Ice-sheet velocity mapping: a combined interferometric and speckle-tracking approach. Ann. Glaciol., 34, 195201 (doi: 10.3189/172756402781817978)
Joughin, I, Smith, BE, Shean, DE and Floricioiu, D (2014) Brief Communication: Further summer speedup of Jakobshavn Isbræ. Cryosphere, 8(1), 209214 (doi: 10.5194/tc-8-209-2014)
Lacroix, P, Berthier, E and Maquerhua, ET (2015) Earthquake-driven acceleration of slow-moving landslides in the Colca valley, Peru, detected from Pléiades images. Remote Sens. Environ., 165, 148–158 (doi: 10.1016/j.rse.2015.05.010)
Lebègue, L and 10 others (2013) PLEIADES satellites image quality commissioning. In Butler, JJ, Xiong, X and Gu, X eds Earth Observing Systems XVIII, 88660Z (doi: 10.1117/12.2023288)
Leclercq, PW, Pitte, P, Giesen, RH, Masiokas, MH and Oerlemans, J (2012) Modelling and climatic interpretation of the length fluctuations of Glaciar Frías (north Patagonian Andes, Argentina) 1639–2009 AD. Climate Past, 8(5), 13851402 (doi: 10.5194/cp-8-1385-2012)
Leprince, S, Barbot, S, Ayoub, F and Avouac, JP (2007) Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images: application to ground deformation measurements. IEEE Trans. Geosci. Remote Sens., 45(6), 15291557 (doi: 10.1109/TGRS.2006.888937)
Masiokas, MH, Villalba, R, Luckman, BH, Lascano, ME, Delgado, S and Stepanek, P (2008) 20th-century glacier recession and regional hydroclimatic changes in northwestern Patagonia. Global Planet. Change, 60(1–2), 85100 (doi: 10.1016/j.gloplacha.2006.07.031)
Masiokas, MH, Rivera, A, Espizua, LE, Villalba, R, Delgado, S and Aravena, JC (2009) Glacier fluctuations in extratropical South America during the past 1000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol., 281(3–4), 242268 (doi: 10.1016/j.palaeo.2009.08.006)
Masiokas, MH, Luckman, BH, Villalba, R, Ripalta, A and Rabassa, J (2010) Little Ice Age fluctuations of Glaciar Río Manso in the north Patagonian Andes of Argentina. Quat. Res., 73(1), 96106 (doi: 10.1016/j.yqres.2009.08.004)
McNabb, RW and 11 others (2012) Using surface velocities to calculate ice thickness and bed topography: a case study at Columbia Glacier, Alaska, USA. J. Glaciol., 58(212), 11511164 (doi: 10.3189/2012JoG11J249)
Melkonian, AK, Willis, MJ, Pritchard, ME, Rivera, A, Bown, F and Bernstein, SA (2013) Satellite-derived volume loss rates and glacier speeds for the Cordillera Darwin Icefield, Chile. Cryosphere, 7(3), 823839 (doi: 10.5194/tc-7-823-2013)
Michel, R and Rignot, E (1999) Flow of Glaciar Moreno, Argentina, from repeat-pass Shuttle Imaging Radar images: comparison of the phase correlation method with radar interferometry. J. Glaciol., 45(149), 93100
Naruse, R, Fukami, H and Aniya, M (1992) Short-term variations in flow velocity of Glaciar Soler, Patagonia, Chile. J. Glaciol., 38(128), 152156
Nienow, P, Sharp, M and Willis, I (1998) Seasonal changes in the morphology of the subglacial drainage system, Haut Glacier d’Arolla, Switzerland. Earth Surf. Process. Landf., 23(9), 825843 (doi: 10.1002/(SICI)1096-9837(199809)23:9<825::AID-ESP893>3.0.CO;2-2)
Nuth, C, Schuler, TV, Kohler, J, Altema, B and Hagen, JO (2012) Estimating the long-term calving flux of Kronebreen, Svalbard, from geodetic elevation changes and mass-balance modelling. J. Glaciol., 58(207), 119133 (doi: 10.3189/2012JoG11J036)
Oerlemans, J (2001) Glaciers and climate change. AA Balkema, Rotterdam
Paul, F and Mölg, N (2014) Hasty retreat of glaciers in northern Patagonia from 1985 to 2011. J. Glaciol., 60(224) 10331043 (doi: 10.3189/2014JoG14J104)
Rabassa, J, Rubulis, S and Suarez, J (1978) Los glaciares del Monte Tronador. An. Parq. Nac., 14, 259318
Rivera, A, Bown, F, Carrión, D and Zenteno, P (2012) Glacier responses to recent volcanic activity in Southern Chile. Environ. Res. Lett., 7(1), 014036 (doi: 10.1088/1748-9326/7/1/014036)
Riveros, N, Euillades, L, Euillades, P, Moreiras, S and Balbarani, S (2013) Offset tracking procedure applied to high resolution SAR data on Viedma Glacier, Patagonian Andes, Argentina. Adv. Geosci., 35, 7–13 (doi: 10.5194/adgeo-35-7-2013)
Sakakibara, D and Sugiyama, S (2014) Ice-front variations and speed changes of calving glaciers in the Southern Patagonia Icefield from 1984 to 2011: calving glaciers in southern Patagonia. J. Geophys. Res. Earth Surf., 119(11), 25412554 (doi: 10.1002/2014JF003148)
Sakakibara, D, Sugiyama, S, Sawagaki, T, Marinsek, S and Skvarca, P (2013) Rapid retreat, acceleration and thinning of Glaciar Upsala, Southern Patagonia Icefield, initiated in 2008. Ann. Glaciol., 54(63), 131138 (doi: 10.3189/2013AoG63A236)
Scherler, D and Strecker, MR (2012) Large surface velocity fluctuations of Biafo Glacier, central Karakoram, at high spatial and temporal resolution from optical satellite images. J. Glaciol., 58(209), 569580 (doi: 10.3189/2012JoG11J096)
Scherler, D, Leprince, S and Strecker, MR (2008) Glacier-surface velocities in alpine terrain from optical satellite imagery: accuracy improvement and quality assessment. Remote Sens. Environ., 112(10), 38063819 (doi: 10.1016/j.rse.2008.05.018)
Skvarca, P, Raup, B and De Angelis, H (2003) Recent behaviour of Glaciar Upsala, a fast-flowing calving glacier in Lago Argentino, southern Patagonia. Ann. Glaciol., 36, 184188 (doi: 10.3189/172756403781816202)
Stumpf, A, Malet, JP, Allemand, P and Ulrich, P (2014) Surface reconstruction and landslide displacement measurements with Pléiades satellite images. ISPRS J. Photogramm. Remote Sens., 95, 112 (doi: 10.1016/j.isprsjprs.2014.05.008)
Sugiyama, S and Gudmundsson, H (2004) Short-term variations in glacier flow controlled by subglacial water pressure at Lauteraargletscher, Bernese Alps, Switzerland. J. Glaciol., 50(170), 353362 (doi: 10.3189/172756504781829846)
Sugiyama, S and 7 others (2011) Ice speed of a calving glacier modulated by small fluctuations in basal water pressure. Nature Geosci., 4(9), 597600 (doi: 10.1038/ngeo1218)
Villalba, R, Leiva, JC, Rubulls, S, Suarez, J and Lenzano, L (1990) Climate, tree-ring, and glacial fluctuations in the Río Frías Valley, Río Negro, Argentina. Arct. Alp. Res., 22(3), 215 (doi: 10.2307/1551585)

Keywords

Related content

Powered by UNSILO

First surface velocity maps for glaciers of Monte Tronador, North Patagonian Andes, derived from sequential Pléiades satellite images

  • L. Ruiz (a1), E. Berthier (a2), M. Masiokas (a1), P. Pitte (a1) and R. Villalba (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.