Skip to main content Accessibility help
×
Home

Engineering Properties of Fresh-Water Ice

  • L. W. Gold (a1)

Abstract

The principal engineering problems requiring knowledge concerning the properties of ice are prediction of the maximum force that ice might exert on a structure and determination of the load that can be placed safely on an ice cover. The properties of ice relevant to these problems are discussed. Particular attention is given to the dependence of Young's modulus on the frequency of the stress, strain-rate dependence of the yield and fracture strengths, and the ductile to brittle transition. It is shown that the strain-rate dependence of these properties is consistent with information on the stress dependence of dislocation velocity on the basal plane. The tensile and compressive strengths are also shown to be consistent with current theories of crack initiation and propagation.

Résumé

Propriétés de la glace d'eau douce en génie civil. Les principaux problèmes de genie civil requérant des connaissances sur les propriétés de la glace sont la prévision des efforts maximaux que la glace peut exercer sur une structure et la détermination de la charge que l'on peut faire supporter en sécurité par une couverture de glace. On discute les propriétés de la glace à l'egard de ces problèmes. On accorde une attention particulière à l'influence de la fréquence des efforts subis sur le module de Young, à l'influence de la vitesse de déformation sur les limites d'écoulement et les efforts de rupture, et sur le passage de la zone plastique à la zone eassante. On montre que l'influence de la vitesse de déformation sur ces propriétés est en accord avec ce que l'on sait de l'influence des contraintes sur la vitesse des dislocations sur le plan de base. On montre aussi que les résistances à la traction et à la compression sont en accord avec les théories courantes sur la production et la propagation des fentes.

Zusammenfassung

Bautechnische Eigenschaften von Süsswassereis. Die wichtigsten ingenieurtechnischen Probleme, die eine Kenntnis der Eigenschaften des Eises erfordern, sind die Vorausberechnung der maximalen Beanspruchung, die Eis auf ein Bauwerk ausüben kann, und die Bestimmung der Last, die ohne Gefahr auf eine Eisdecke gebracht werden kann. Die für diese Probleme bedeutsamen Eigenschaften des Eises werden diskutiert. Besondere Beachtung findet die Abhängigkeit des Youngschen Moduls von der Frequenz der Spannung, die Abhängigkeit zwischen Verformungsrate und Fliess- und Bruchfestigkeit sowie der Übergang von der Elastizität zur Sprödigkeit. Es wird gezeigt, dass die Abhangigkeit dieser Eigenschaften von der Verformungsrate ubereinstimmt mit der Kenntnis der Spannungsabhängigkeit der Versetzungsgeschwindigkeit in der Basisebene. Ebenso wird die Konsistenz der Zug- und Druckfestigkeit mit den gängigen Theorien der Rissbildung und -fortflanzung nachgewiesen.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Engineering Properties of Fresh-Water Ice
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Engineering Properties of Fresh-Water Ice
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Engineering Properties of Fresh-Water Ice
      Available formats
      ×

Copyright

References

Hide All
Boyle, R. W., and Sproule, D. O. 1931. Velocity of longitudinal vibration in solid rods (ultrasonic method) with special reference to the elasticity of ice. Canadian Journal of Research, Vol. 5, No. 6, p. 601–18.
Butkovich, T. R. 1954. The ultimate strength of ice. U.S. Snow, Ice and Permafrost Research Establishment. Research Paper 11.
Carter, D., and Michel, B. 1971. Lois et mécanismes de l'apparente fracture fragile de la glace de riviére et de lac. Université Laval. Facultté des Sciences. Département de Géné Civil. Section Mécanique des Glaces. Rapport S–22.
Croasdale, K. R. 1974. Crushing strength of Arctic ice. (In Reed, J. C., and Sater, J. E., ed. The coast and shelf of the Beaufort Sea. Proceedings of a symposium on Beaufort Sea coast and shelf research. Arlington, Virginia, Arctic Institute of North America, p. 377–99.)
Ewing, M., and others. 1934. Propagation of elastic waves in ice. Part I, by Ewing, M., Crary, A. P. and Thorne, A. M.. Physics, Vol. 5, No. 6, p. 165–68.
Frankenstein, G. E., and Garner, R. 1970. Dynamic Young's modulus and flexural strength of sea ice. U.S. Cold Regions Research and Engineering Laboratory. Technical Report 222.
Frederking, R. M. W. [1972.] Preliminary results of plane strain compression tests on columnar-grained ice. (In [International Association of Hydraulic Research.] I.A.H.R. symposium. Ice and its action on hydraulic structures, Leningrad, USSR, 26-29 September 1972. [Leningrad, International Association of Hydraulic Research], [Vol. 1], p. 23–27.)
Frederking, R. M. W., and Gold, L. W. 1976. The bearing capacity of ice covers under static loads. Canadian Journal of Civil Engineering, Vol. 3, No. 2, p. 288–93.
Fukuda, A., and Higashi, A. 1969. X-ray diffraction topographic studies of the deformation behaviour of ice single crystals. (In Riehl, N., and others, ed. Physics of ice. proceedings of the international symposium on physics of ice, Munich, Germany, September 9–14, 1968. Edited by Riehl, N., Bullemer, B., Engelhardt, H.. New York, Plenum Press, p. 239–50.)
Fukuda, A., and Higashi, A. 1973. Dynamical behaviour of dislocations in ice crystals. Crystal Lattice Difects, Vol. 4, No. 3, p. 203–10.
Glen, J. W. 1975. The mechanics of ice. U.S. Cold Regions Research and Engineering Laboratory. Cold regions science and engineering. Hanover, N.H., Pt. II, Sect. C2b.
Gold, L. W. 1958. Some observations of the dependence of strain on stress for ice. Canadian Journal of Physics, Vol. 36, No. 10, p. 1265–75.
Gold, L. W. 1959. Static and dynamic elastic constants. British Journal of Applied Physics, Vol. 11, No. 11, p. 522–23.
Gold, L. W. 1963. Crack formation in ice plates by thermal shock. Canadian Journal of Physics, Vol. 41, No. 10, p. 1712–28.
Gold, L. W. 1971. Use of ice covers for transportation. Canadian Geotechnical Journal, Vol. 8, No. 2, p. 170–81.
Gold, L. W. 1972[a]. The failure process in columnar-grained ice. Canada. National Research Council. Division of Building Research. Technical Paper No. 369.
Gold, L. W. 1972[b]. The process of failure of columnar-grained ice. Philosophical Magazine, Eighth Ser., Vol. 26, No. 2, p. 311–28.
Gold, L. W., and Krausz, A. S. 1971. Investigation of the mechanical properties of St. Lawrence River ice. Canadian Geotechnical Journal, Vol. 8, No. 2, p. 163–69.
Gold, L. W., and Traetteberg, A. [1975.] Young's modulus of ice and ice engineering problems. (In Weaver, D. S., ed. Proceedings. Second symposium. Applications of Solid Mechanics. June 17 and 18, 1974. Hamilton, Ontario, Faculty of Engineering, McMaster University, Vol. I, p. 1–16.)
Hawkes, I., and Mellor, M. 1972. Deformation and fracture of ice under uniaxial stress. Journal of Glaciology, Vol. 11, No. 61, p. 103–31.
Higashi, A. 1967. Mechanisms of plastic deformation in ice single crystals. (In Oura, H., ed. Physics of snow and ice: international conference on low temperature science. … 1966. … Proceedings, Vol. I, Pt. I. [Sapporo], Institute of Low Temperature Science, Hokkaido University, p. 277–89.)
Higashi, A., and others. 1968. Strength of ice single crystals in relation to the dislocation structure, by Higashi, A., Mae, S. and Fukuda, A.. Transactions. Japan Institute of Metals, Vol. 9, Supplement, p. 784–89.
Hirayama, K., and others. 1974. An investigation of ice forces on vertical structures, by Hirayama, K., Schwarz, J. and Wu, H. C.. Iowa City, Iowa Institute of Hydraulic Research, University of Iowa. (IIHR Report No. 158.)
Johnston, W. G. 1962. Yield point and delay times in single crystals. Journal of Applied Physics, Vol. 33, No. 9, p. 2716-30.
Jones, S. J., and Gilra, N. K. 1973. Dislocations in ice observed by X-ray topography. (In Whalley, E., and others, ed. Physics and chemistry of ice: papers presented at the Symposium on the Physics and Chemistry of lee, held in Ottawa, Canada, 14–18 August 1972. Edited by Whalley, E., Jones, S. J., Gold, L. W.. Ottawa, Royal Society of Canada, p. 344–49.)
Jones, S. J., and Glen, J. W. 1969. The mechanical properties of single crystals of pure ice. Journal of Glaciology, Vol. 8, No. 54, p. 463–73.
Ketcham, W. M., and Hobbs, P. V. 1969. An experimental determination of the surface energies of ice. Philosophical Magazine, Eighth Ser., Vol. 19, No. 162, p. 1161-73.
Kuroiwa, D. 1964. Internal friction of ice. Contributions from the Institute of Low Temperature Science, Hokkaido University, Ser. A, No. 18.
Mellor, M., and Smith, J. H. 1967. Creep of snow and ice. (In Ōura, H., ed. Physics of snow and ice: international conference on low temperature science. … 1966. … Proceedings, Vol. 1, Pt. 2. [Sapporo], Institute of Low Temperature Science, Hokkaido University, p. 843–55.)
Michel, B., and Ramseier, R. O. 1971. Classification of river and lake ice. Canadian Geotechnical Journal, Vol. 8, No. I, p. 36-45.
Nakaya, U. 1959. Visco-elastic properties of snow and ice in the Greenland ice cap. U.S. Snow, Ice and Permafrost Research Establishment. Research Report 46.
Northwood, T. D. 1947. Sonic determinations of the elastic properties of ice. Canadian Journal of Research, Sect. A, Vol. 25, No. 2, p. 88-95.
Page, D. F., and Ramseier, R. O. 1975. Application of radar techniques to ice and snow studies. Journal of Glaciology, Vol. 15, No. 73, p. 171-91.
Ramseier, R. O. Unpublished. Growth and mechanical properties of river and lake ice. [Ph.D. thesis, Faculty of Science, Dept. of Civil Engineering, Laval University, Quebec, 1976.]
Smith, E., and Barnby, J. T. 1967. Crack nucleation in crystalline solids. Metal Science Journal, Vol. I, No. 2, p. 56–64.
Tetelman, A. S., and McEvily, A. J. 1967. Fracture of structural materials. New York, John Wiley and Sons.
Traetteberg, A., and others. 1975. The strain rate and temperature dependence of Young's modulus of ice, by Traetteberg, A., Gold, L. W. and Frederking, R. [M. W.]. (In Frankenstein, G. E., ed. Proceedings, third International Symposium on Ice Problems, 18–21 August 1975, Hanover, New Hampshire. [Hanover, N.H.], International Association of Hydraulic Research. Committee on Ice Problems, p. 479–86.)
VanDevender, J. P., and Itagaki, K. 1973. Internal friction of single crystal ice. US. Cold Regions Research and Engineering Laboratory. Research Report 243.
Wakahama, G. 1967. On the plastic deformation of single crystals of ice. (In Ōura, H., ed. Physics of snow and ice : international conference on low temperature science. … 1966. … Proceedings, Vol. I, Pt. I. [Sapporo], Institute of Low Temperature Science, Hokkaido University, p. 291–311.)
Weertman, J. 1973. Creep of ice. (In Whalley, E., and others, ed. Physics and chemistry ofice: papers presented at the Symposium on the Physics and Chemistry of Ice, held in Ottawa, Canada, 14-18 August 1972. Edited by Whallry, E., Jones, S. J., Gold, L. W.. Ottawa, Royal Society of Canada, p. 320–37.)
Wu, H. C., and others. 1974. Fracture in the compression of a brittle material–columnar grained ice, by Wu, H. C., Chang, K. J. and Schwarz, J.. Iowa City, Iowa Institute of Hydraulic Research, University of Iowa. (IIHR Report No. 23.)
Yamaji, K., and Kuroiwa, D. 1956. 0°—100°C no han'i ni okeru kori nö nendansei. I [Viscoelasticity of ice in the temperature range 0 to –100°C. I]. Teion-kagaku: Low Temperature Science, Ser. A, [No.] 15, p. 171–83. [Translation T633, Defence Research Board of Canada, Ottawa, 1958.]
Zabilansky, L. J., and others. 1975. Ice forces on model structures, by Zabilansky, L. J., Nevel, D. F. and Haynes, F. D.. Canadian Journal of Civil Engineering, Vol. 2, No. 4, p. 400–17.
Zhurkov, S. N., and Sanfirova, T. P. 1960. Izucheniye vremennoy i temperaturnoy zavisimosti prochnosti [A study of the time and temperature dependence of mechanical strength]. Fizika Tverdogo Tela, Tom 2, No. 6, p. 1033–39. [English translation : Soviet Physics. Solid State, Vol. 2, No. 6, p. 933–38.]

Engineering Properties of Fresh-Water Ice

  • L. W. Gold (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed