Skip to main content Accessibility help
×
Home

Dynamics and GPR stratigraphy of a polar rock glacier on James Ross Island, Antarctic Peninsula

  • Kotaro Fukui (a1), Toshio Sone (a2), Jorge A. Strelin (a3) (a4), Cesar A. Torielli (a3), Junko Mori (a2) and Yoshiyuki Fujii (a1)...

Abstract

We describe field measurements (ground-penetrating radar (GPR), geodetic survey and ice-core drilling) to provide new information on the movement mechanism and internal structure of a polar rock glacier on James Ross Island, Antarctic Peninsula. We collected GPR data along longitudinal and transverse profiles. The longitudinal GPR profiles identify inter-bedded debris-rich layers that dip up-glacier, similar to the thrust structures in the compression zone of a valley glacier. The transverse GPR profiles indicate a syncline structure inclined towards the central part of the rock glacier, resembling the transverse foliation of a valley glacier. The stratigraphy of two boreholes shows that the rock glacier consists primarily of bubbly ice with thin debris-rich layers, an internal structure similar to the ‘nested spoons’ structure common in the interior of valley glaciers. These results indicate that the glacier motion is controlled by shear movement, common in valley glaciers. The geodetic survey confirms that flow velocities decrease towards the lower part of the rock glacier. Such heterogeneous movement causes longitudinal compression and forms thrusts which then create the debris-rich layer by uplifting basal ice and debris. Pushing of the upstream ice against the downstream ice bends the surface layers, forming transverse ridges on the rock glacier surface.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dynamics and GPR stratigraphy of a polar rock glacier on James Ross Island, Antarctic Peninsula
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Dynamics and GPR stratigraphy of a polar rock glacier on James Ross Island, Antarctic Peninsula
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Dynamics and GPR stratigraphy of a polar rock glacier on James Ross Island, Antarctic Peninsula
      Available formats
      ×

Copyright

References

Hide All
Baker, V.R. 2003. Planetary science: icy martian mysteries. Nature, 426(6968), 779780.
Barsch, D. 1996. Rockglaciers: indicators for the present and former geoecology in high mountain environments. Berlin, etc., Springer-Verlag.
Benn, D. I. and Evans, D.J.A.. 1998. Glaciers and glaciation. London, Arnold.
Berthling, I., Etzelmüller, B., Isaksen, K. and Sollid, J.L.. 2000. Rock glaciers on Prins Karls Forland. II: GPR soundings and the development of internal structures. Permafrost Periglac. Process., 11(4), 357369.
Bibby, J.S. 1966. The stratigraphy of part of north-east Graham Land and the James Ross Island Group. Br. Antarct. Surv. Sc. Rep., 53.
Chinn, T.J.H. and Dillon, A.. 1987. Observations on a debris-covered polar glacier “Whiskey Glacier”, James Ross Island, Antarctic Peninsula, Antarctica. J. Glaciol., 33(115), 300310.
Colaprete, A. and Jakosky, B.M.. 1998. Ice flow and rock glaciers on Mars. J. Geophys. Res., 103(E3), 58975909.
Degenhardt, J.J. and Giardino, J.R.. 2003. Subsurface investigation of a rock glacier using ground-penetrating radar: implications for locating stored water on Mars. J. Geophys. Res., 108(E4), 8036. (10.1029/2002JE001888.)
Fukuda, M., Strelin, J.A., Shimokawa, K., Takahashi, N., Sone, T. and Trombotto, D.. 1992. Permafrost occurrence of Seymour Island and James Ross Island, Antarctic Peninsula region. In Yoshida, Y., Kaminuma, K. and Shiraishi, K., eds. Recent progress in Antarctic earth sciences. Tokyo, Terra Scientific Publishing Co., 745750.
Glen, J.W. 1952. Experiments on the deformation of ice. J. Glaciol., 2(12), 111114.
Haeberli, W. and 10 others. 2008. Permafrost creep and rock glacier dynamics. Permafrost Periglac. Process., 17(3), 189214.
Hambrey, M.J. and Müller, F.. 1978. Structures and ice deformation in the White Glacier, Axel Heiberg Island, Northwest Territories, Canada. J. Glaciol., 20(82), 4166.
Hambrey, M.J., Bennett, M.R., Dowdeswell, J.A., Glasser, N.F. and Huddart, D.. 1999. Debris entrainment and transfer in polythermal valley glaciers. J. Glaciol., 45(149), 6986.
Hjort, C., Ingólfsson, O., Möller, P. and Lirio, J.M.. 1997. Holocene glacial history and sea level changes on James Ross Island, Antarctic Peninsula. J. Quat. Sci., 12(4), 259273.
Hooke, R.LeB. and Hudleston, P.J.. 1978. Origin of foliation in glaciers. J. Glaciol., 20(83), 285299.
Humlum, O. 1998. The climatic significance of rock glaciers. Permafrost Periglac. Process., 9(4), 375395.
Humlum, O. 2000. The geomorphic significance of rock glaciers: estimates of rock glacier debris volumes and headwall recession rates in West Greenland. Geomorphology, 35(1–2), 4167.
Isaksen, K., Ødegård, R.S., Eiken, T. and Sollid, J.L.. 2000. Composition, flow and development of two tongue-shaped rock glaciers in the permafrost of Svalbard. Permafrost Periglac. Process., 11(3), 241257.
Lliboutry, L. 1965. Traité de glaciologie. Tome II: Glaciers, variations du climat, sols gelés. Paris, Masson et Cie.
Lundqvist, J., Lilliesköld, M. and Östmark, K.. 1995. Glacial and periglacial deposits of the Tumbledown Cliffs area, James Ross Island, West Antarctica. Geomorphology, 11(3), 205214.
Potter, N. Jr. 1972. Ice-cored rock glacier, Galena Creek, northern Absaroka Mountains, Wyoming. Geol. Soc. Am. Bull., 83(10), 30253057.
Sone, T. and Strelin, J.A.. 1997. Air temperature conditions and climatic–geomorphological characteristics of James Ross Island, Antarctic Peninsula. In Rinaldi, C.A., ed. Cuartas Jornadas de communicaciones sobre investigaciones Antárticas. Buenos Aires, Instituto Antártico Argentino. Dirección Nacional del Antártico, 372377.
Strelin, J. and Malagnino, E.C.. 1992. Geomorfología de la Isla James Ross. In Rinaldi, C.A., ed. Geología de la Isla James Ross, Antártida. Buenos Aires, Instituto Antártico Argentino. Dirección Nacional del Antártico, 736.
Strelin, J.A. and Sone, T.. 1998. Rock glaciers on James Ross Island, Antarctica. In Lewkowicz, A.G. and Allard, M., eds. Proceedings of the Seventh International Permafrost Conference, 23–27 June 1998, Yellowknife, N.W.T., Canada. Laval, Université Laval, Centre d’Etudes Nordiques. 10271032.
Strelin, J.A., Sone, T., Mori, J., Torielli, C.A. and Nakamura, T.. 2006. New data related to Holocene landform development and climatic change from James Ross Island, Antarctic Peninsula. In Fütterer, D.K., Damaske, D., Kleinschmidt, G., Miller, H. and Tessensohn, F., eds. Antarctica: contributions to global earth sciences. Berlin, etc., Springer Verlag, 455460.
Wahrhaftig, C. and Cox, A.. 1959. Rock glaciers in the Alaska Range. Geol. Soc. Am. Bull., 70(4), 383436.
Whalley, W.B. and Azizi, F.. 2003. Rock glaciers and protalus landforms: analogous forms and ice sources on Earth and Mars. J. Geophys. Res., 108(E4), 8032. (10.1029/2002JE001864.)
Whalley, W.B. and Martin, H.E.. 1992. Rock glaciers: II models and mechanisms. Progr. Phys. Geogr., 16(2), 127186.

Related content

Powered by UNSILO

Dynamics and GPR stratigraphy of a polar rock glacier on James Ross Island, Antarctic Peninsula

  • Kotaro Fukui (a1), Toshio Sone (a2), Jorge A. Strelin (a3) (a4), Cesar A. Torielli (a3), Junko Mori (a2) and Yoshiyuki Fujii (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.