Skip to main content Accessibility help
×
Home

Creep Slump in Glacier Reservoirs—Theory and Experiment

  • E. M. Shoemaker (a1)

Abstract

Frequently the reservoir region of a cold surge-type glacier has a temperate base, while in a region surrounding the reservoir the base is cold. We analyse the slump process in such a reservoir region— that is, the process whereby material flows toward the lower end of the region and forms a critical wave profile there. The model agrees qualitatively with observations of Trapridge Glacier, Yukon Territory, Canada, which is currently experiencing a critical pre-surge condition. Calculations based on the model give good agreement with the surge cycle time of Rusty Glacier, Yukon Territory. Laboratory experiments show that a large-amplitude slump-induced wave profile forms prior to a surge. Experimental surges were produced with velocity increases of order one hundred.

Résumé

Fréquemment le bassin d’alimentalion d’un glacier froid du type à crue possède un fond tempéré tandis que, dans les zones entourant le bassin le fond est froid. Nous analysons le processus de vidange d’un tel bassin, c’est-à-dire le processus par lequel le matèriel s’écoule vers le point bas du bassin et y forme une onde de crue critique. Le modèle est qualitativement en accord avec les observations faites sur le Trapridge Glacier, dans le territoire du Yukon au Canada, qui se trouve souvent en conditions critiques de pré-crue. Des calculs basés sur le modèle donnent un bon accord avec la période de la crue cyclique du Rusty Glacier dans le territoire du Yukon. Des expériences de laboratoire montrent qu’une vidange de grande amplitude provoque un profil ondulé préalablement à la crue. On a produit des crues expérimentales avec des accroissements de vitesse de l’ordre de un cent.

Zusammenfassung

Häufig hat das Nährgebiet eines kalten ausbrechenden Gletschers einen temperierten Untergrund, während in einem Bereich um das Nährgebeit der Undergrund Gletschers kalt ist. Die vorliegende Analyse gilt dem Einbruchsprozess in und dort ein kritisches Wellenprofil bildet. Das Modell stimmt qualitativ mit Beobachtungen am Trapridge Glacier, Yukon Territory, Kanada, überein, der Vor-Ausbruchs-Phase durchläuft. Berechnungen auf der Basis des Modells geben gute Übereinstimmung mit dem Ausbruckszyklus des Rusty Glacier, Yukon Territory. Laborversuche zeigen, dass sich vor einem Ausbruch ein Wellenprofil mit grosser Amplitude, hervorgerufen durch einen Einbruch, bildet. Experimentell wurden Ausbrüche mit Gesch-windigkeitsanstiegen bis zum Hundertfachen erzeugt.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Creep Slump in Glacier Reservoirs—Theory and Experiment
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Creep Slump in Glacier Reservoirs—Theory and Experiment
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Creep Slump in Glacier Reservoirs—Theory and Experiment
      Available formats
      ×

Copyright

References

Hide All
Clarke, G. K. C. 1976. Thermal regulation of glacier surging. Journal of Glaciology, Vol. 16, No. 74, p. 23150.
Clarke, G. K. U., and Goodman, R. H. 1975. Radio echo soundings and ice-temperature measurements in a surge-type glacier. Journal of Glaciology, Vol. 14, No. 70, p. 7178.
Collins, S. G. 1972. Survey of the Rusty Glacier area, Yukon Territory, Canada, 1967–70. Journal of Glaciology, Vol. 11, No. 02, p. 23553.
Goodman, R. H., and others. 1975. Radio soundings on Trapridge Glacier, Yukon Territory, Canada, by Goodman, R. H., Clarke, G. K. C., Jarvis, G. T., Collins, S. G., and Metcalfe, R.. Journal of Glaciology, Vol. 14, No. 70, p. 7984.
Hoff, N. J. 1953. The necking and rupture of rods subjected to constant tensile loads. Journal of Applied Mechanics, Vol. 20, No. 1, p. 10508.
Isaacson, E., and keller, H. B. 1966. Analysis of numerical methods. New York, John Wiley and Sons, Inc.
Keller, H. B. 1968. Numerical methods for two-point boundary-value problems. Waltham, Mass., Blaisdell.
Meier, M. F., and Post, A. S. 1969. What are glacier surges? Canadian Journal of Earth Sciences, Vol. 6, No. 4, Pt. 2, p. 80717.
Mellor, M., and Testa, R. 1969. Creep of ice under low stress. Journal of Glaciology, Vol. 8, No. 53, p. 14752.
Morland, L. W., and Johnson, I. R. 1980. Steady motion of ice sheets. Journal of Glaciology, Vol. 35, No. 92, p. 22946.
Nye, J. F. 1959. The motion of ice sheets and glaciers. Journal of Glaciology, Vol. 3, No. 26, p. 493507.
Rimrott, F. P. J. 1959. Creep of thick-walled tubes under internal pressure considering large strains. Journal of Applied Mechanics, Vol. 26, No. 2, p. 27175.
Robin, G. de Q. 1955. Ice movement and temperature distribution in glaciers and ice sheets. Journal of Glaciology, Vol. 2, No. 18, p. 52332.
Scheidegger, A. E. 1975. Physical aspects of natural catastrophes. Amsterdam, Elsevier Scientific Publishing Co.
Shoemaker, E.M. 1965 Creep rupture of rotating disks and thin shells of revolution. Transactions of the American Society of Mechanical Engineers. Ser. E. Journal of Applied Mechanics, Vol. 32, No. 3, p. 60710.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed