Skip to main content Accessibility help

Calibration and evaluation of a high-resolution surface mass-balance model for Paakitsoq, West Greenland

  • Alison F. Banwell (a1), Ian C. Willis (a1), Neil S. Arnold (a1), Alexandra Messerli (a1) (a2), Cameron J. Rye (a1) (a3), Marco Tedesco (a4) and Andreas P. Ahlstrøm (a5)...


Modelling the hydrology of the Greenland ice sheet, including the filling and drainage of supraglacial lakes, requires melt inputs generated at high spatial and temporal resolution. Here we apply a high spatial (100 m) and temporal (1 hour) mass-balance model to a 450 km2 subset of the Paakitsoq region, West Greenland. The model is calibrated by adjusting the values for parameters of fresh snow density, threshold temperature for solid/liquid precipitation and elevation-dependent precipitation gradient to minimize the error between modelled output and surface height and albedo measurements from three Greenland Climate Network stations for the mass-balance years 2000/01 and 2004/05. Bestfit parameter values are consistent between the two years at 400 kg m-3, 2°C and +14% (100 m)-1, respectively. Model performance is evaluated, first, by comparing modelled snow and ice distribution with that derived from Landsat-7 ETM+ satellite imagery using normalized-difference snow index classification and supervised image thresholding; and second, by comparing modelled albedo with that retrieved from the MODIS sensor M0D10A1 product. Calculation of mass-balance components indicates that 6% of surface meltwater and rainwater refreezes in the snowpack and does not become runoff, such that refreezing accounts for 31% of the net accumulation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Calibration and evaluation of a high-resolution surface mass-balance model for Paakitsoq, West Greenland
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Calibration and evaluation of a high-resolution surface mass-balance model for Paakitsoq, West Greenland
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Calibration and evaluation of a high-resolution surface mass-balance model for Paakitsoq, West Greenland
      Available formats



Hide All
Ahlstrøm, AP, Mottram, RH, Nielsen, CS, Reeh, N and Andersen, SB (2008) Evaluation of the future hydropower potential at Paakitsoq, Ilulissat, West Greenland: technical report. Dan. Cr0nl. Ceol. Unders. Rapp. 37
Alley, RB, Dupont, TK, Parizek, BR and Anandakrishnan, S (2005) Access of surface meltwater to beds of sub-freezing glaciers: preliminary insights. Ann. Claciol., 40, 814 (doi: 10.3189/172756405781813483)
Alley, RB and 13 others (2010) History of the Greenland Ice Sheet: paleoclimatic insights. Quat. Sci. Rev., 29(15–16), 17281756 (doi: 10.1016/j.quascirev.2010.02.007)
Arctic Monitoring and Assessment Programme (AMAP) (2009) Summary: the Greenland ice sheet in a changing climate: Snow, Water, Ice and Permafrost in the Arctic (SWIPA). AMAP, Oslo
Arnold, N (2005) Investigating the sensitivity of glacier mass- balance/elevation profiles to changing meteorological conditions: model experiments for Haut Glacier d’Arolla, Valais, Switzerland. Arct. Antarct. Alp. Res., 37(2), 139145
Arnold, NS and Rees, WG (2003) Self-similarity in glacier surface characteristics. J. Claciol., 49(167), 547554 (doi: 10.3189/172756503781830368)
Arnold, NS, Willis, IC, Sharp, MJ, Richards, KS and Lawson, WJ (1996) A distributed surface energy-balance model for a small valley glacier. I. Development and testing for Haut Glacier d’Arolla, Valais, Switzerland. J. Claciol., 42(140), 7789
Arnold, NS, Rees, WG, Hodson, AJ and Kohler, J (2006) Topographic controls on the surface energy balance of a high Arctic valley glacier. J. Ceophys. Res., 111(F2), F02011 (doi: 10.1029/2005JF000426)
Bales, RC and 8 others (2009) Annual accumulation for Greenland updated using ice core data developed during 2000–2006 and analysis of daily coastal meteorological data. J. Ceophys. Res., 114(D6), D06301 (doi: 10.1029/2008JD010600)
Bartholomew, I and 6 others (2011) Supraglacial forcing of subglacial drainage in the ablation zone of the Greenland ice sheet. Ceophys. Res. Lett., 38(8), L08502 (doi: 10.1029/2011GL047063)
Bassford, RP (2002) Geophysical and numerical modelling investigations of the ice caps in Severnaya Zemlya. (PhD thesis, University of Bristol)
Bougamont, M, Bamber, JL and Greuell, W (2005) A surface mass balance model for the Greenland Ice Sheet. J. Ceophys. Res., 110(F4), F04018 (doi: 10.1029/2005JF000348)
Box, JE and Ski, K (2007) Remote sounding of Greenland supraglacial melt lakes: implications for subglacial hydraulics. J. Claciol., 53(181), 257265 (doi: 10.3189/172756507782202883)
Box, JE and 8 others (2006) Greenland ice sheet surface mass balance variability (1988–2004) from calibrated polar MM5 output. J. Climate, 19(12), 27832800 (doi: 10.1175/JCLI3738.1)
Box, JE, Yang, L, Bromwich, DH and Bai, L-S (2009) Greenland ice sheet surface air temperature variability: 1840–2007. J. Climate, 22(14), 40294049 (doi: 10.1175/2009JCLI2816.1)
Braithwaite, RJ and Olesen, OB (1993) Seasonal variation of ice ablation at the margin of the Greenland ice sheet and its sensitivity to climate change, Qamanarssup sermia, West Greenland. J. Claciol., 39(132), 267274
Brock, BW, Willis, IC, Sharp, MJ and Arnold, NS (2000) Modelling seasonal and spatial variations in the surface energy balance of Haut Glacier d’Arolla, Switzerland. Ann. Claciol., 31, 5362 (doi: 10.3189/172756400781820183)
Brutsaert, WF (1975) Water quality modeling by Monte Carlo simulation. Water Res. Bull., 11(2), 229236
Burgess, EW and 6 others (2010) A spatially calibrated model of annual accumulation rate on the Greenland Ice Sheet (19582007). J. Ceophys. Res., 115(F2), F02004 (doi: 10.1029/2009JF001293)
Cappellen, and others (2010) DMI monthly data collection 17682009, Denmark, The Faroe Islands and Creenland. Danish Meteorological Institute, Copenhagen (DMI Tech. Rep. 10–05)
Catania, GA and Neumann, TA (2010) Persistent englacial drainage features in the Greenland Ice Sheet. Ceophys. Res. Lett., 37(2), L02501 (doi: 10.1029/2009GL041108)
Catania, GA, Neumann, TA and Price, SF (2008) Characterizing englacial drainage in the ablation zone of the Greenland ice sheet. J. Claciol., 54(187), 567578 (doi: 10.3189/002214308786570854)
Chander, G, Markham, BL and Helder, DL (2009) Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ., 113(5), 893903 (doi: 10.1016/j.rse.2009.01.007)
Chen, JL, Wilson, CR and Tapley, BD (2011) Interannual variability of Greenland ice losses from satellite gravimetry. J. Ceophys. Res., 116(B7), B07406 (doi: 10.1029/2010JB007789)
Cogley, JG and 10 others (2011) Clossary of glacier mass balance and related terms. UNESCO-International Hydrological Programme, Paris (IHP-VII Technical Documents in Hydrology 86)
Colgan, W and 7 others (2011) The annual glaciohydrology cycle in the ablation zone of the Greenland ice sheet: Part 1. Hydrology model. J. Claciol., 57(204), 697709 (doi: 10.3189/002214311797409668)
Cuffey, KM and Paterson, WSB (2010) The physics of glaciers, 4th edn. Butterworth-Heinemann, Oxford
Das, SB and 6 others (2008) Fracture propagation to the base of the Greenland Ice Sheet during supraglacial lake drainage. Science, 320(5877), 778781 (doi: 10.1126/science.1153360)
Dyer, AJ (1974) A review of flux-profile relationships. Bound.-Layer Meteorol., 7(3), 363372 (doi: 10.1007/BF00240838)
Ettema, J, Van den Broeke, MR, Van Meijgaard, E, Van de Berg, WJ, Box, JE and Steffen, K (2010) Climate of the Greenland ice sheet using a high-resolution climate model: Part 1: evaluation. Cryos. Discuss., 4(4), 511627 (doi: 10.5194/tc-4–511–2010)
Fettweis, X (2007) Reconstruction of the 1979–2006 Greenland ice sheet surface mass balance using the regional climate model MAR. Cryosphere, 1(1), 2140 (doi: 10.5194/tc-1–21–2007)
Fettweis, X, Mabille, G, Erpicum, M, Nicolay, S and Van den Broeke, M (2011a) The 1958–2009 Greenland ice sheet surface melt and the mid-tropospheric atmospheric circulation. Climate Dyn., 36(1–2), 139159 (doi: 10.1007/s00382–010–0772–8)
Fettweis, X, Tedesco, M, Van den Broeke, M and Ettema, J (2011b) Melting trends over the Greenland ice sheet (1958–2009) from spaceborne microwave data and regional climate models. Cryosphere, 5(2), 359375 (doi: 10.5194/tc-5–359–2011)
Gardner, AS and Sharp, MJ (2010) A review of snow and ice albedo and the development of a new physically based broadband albedo parameterization. J. Ceophys. Res., 115(F1), F01009 (doi: 10.1029/2009JF001444)
Greuell, W and Knap, WH (2000) Remote sensing of the albedo and detection of the slush line on the Greenland ice sheet. J. Ceophys. Res., 105(D12), 15 56715 576 (doi: 10.1029/1999JD901162)
Greuell, JW and Konzelmann, T (1994) Numerical modeling of the energy balance and the englacial temperature of the Greenland ice sheet: calculations for the ETH-Camp location (West Greenland, 1155 m a.s.l.). Clobal Planet. Change, 9(1–2), 91114
Griffin, MK, Hsu, SM, Burke, HK, Orloff, SM and Upham, CA (2005) Examples of EO-1 Hyperion data analysis. Lincoln Lab. J., 15(2), 271298
Gupta, RP, Haritashya, UK and Singh, P (2005) Mapping dry/wet snow cover in the Indian Himalayas using IRS multispectral imagery. Remote Sens. Environ., 97(4), 458469 (doi: 10.1016/j.rse.2005.05.010)
Hall, DK, Riggs, GA and Salomonson, VV (1995) Development of methods for mapping global snow cover using Moderate Resolution Imaging Spectroradiometer (MODIS) data. Remote Sens. Environ., 54(2), 127140 (doi: 10.1016/0034–4257(95) 00137-P)
Hall, DK, Riggs, GA and Salomonson, VV (2006) updated daily. MODIS/Terra Snow Cover Daily L3 Global 500m Grid, Version 5. National Snow and Ice Data Center, Boulder, CO. Digital media:
Hall, DK, Williams, RS Jr, Luthcke, SB and Digirolamo, NE (2008) Greenland ice sheet surface temperature, melt and mass loss: 2000–2006. J. Glaciol., 54(184), 8193 (doi: 10.3189/002214308784409170)
Hanna, E, Huybrechts, P, Janssens, I, Cappelen, J, Steffen, K and Stephens, A (2005) Runoff and mass balance of the Greenland ice sheet: 1958–2003. J. Geophys. Res., 110(D13), D13108 (doi: 10.1029/2004JD005641)
Hanna, E and 8 others (2008) Increased runoff from melt from the Greenland Ice Sheet: a response to global warming. J. Climate, 21(2), 331341
Hooke, RLeB, Calla, P, Holmlund, P, Nilsson, M and Stroeven, A (1989) A 3 year record of seasonal variations in surface velocity, Storglaciaren, Sweden. J. Glaciol., 35(120), 235247
Howat, IM, Ahn, Y, Joughin, I, Van den Broeke, MR, Lenaerts, JTM and Smith, B (2011) Mass balance of Greenland’s three largest outlet glaciers, 2000–2010. Geophys. Res. Lett., 38(12), L12501 (doi: 10.1029/2011GL047565)
Iken, A and Bindschadler, RA (1986) Combined measurements of subglacial water pressure and surface velocity of Findelengletscher, Switzerland: conclusions about drainage system and sliding mechanism. J. Glaciol., 32(110), 101119
Janssens, I and Huybrechts, P (2000) The treatment of meltwater retardation in mass-balance parameterizations of the Greenland ice sheet. Ann. Glaciol., 31, 133140 (doi: 10.3189/172756400781819941)
Joughin, I, Abdalati, W and Fahnestock, MA (2004) Large fluctuations in speed on Greenland’s Jakobshavn Isbr* glacier. Nature, 432(7017), 608610 (doi: 10.1038/nature03130)
Joughin, I, Das, SB, King, MA, Smith, BE, Howat, IM and Moon, T (2008) Seasonal speedup along the western flank of the Greenland Ice Sheet. Science, 320(5877), 781783 (doi: 10.1126/science.1153288)
Joughin, I, Smith, BE, Howat, IM, Scambos, T and Moon, T (2010) Greenland flow variability from ice-sheet-wide velocity mapping. J. Glaciol., 56(197), 415430 (doi: 10.3189/002214310792447734)
Klein, AG and Barnett, AC (2003) Validation of daily MODIS snow cover maps of the Upper Rio Grande River Basin for the 20002001 snow year. Remote Sens. Environ., 86(2), 162176 (doi: 10.1016/S0034–4257(03)00097-X)
Klein, AG and Stroeve, J (2002) Development and validation of a snow albedo algorithm for the MODIS instrument. Ann. Glaciol., 34, 4552 (doi: 10.3189/172756402781817662)
König, M, Winther, J and Isaksson, E (2001) Measuring snow and glacier ice properties from satellite. Rev. Geophys., 39(1), 127
Konzelmann, T, Van de Wal, RSW, Greuell, JW, Bintanja, R, Henneken, EAC and Abe-Ouchi, A (1994) Parameterization of global and longwave incoming radiation for the Greenland ice sheet. Global Planet. Change, 9(1–2), 143164 (doi: 10.1016/0921–8181(94)90013–2)
Krabill, W and 12 others (2004) Greenland Ice Sheet: increased coastal thinning. Geophys. Res. Lett., 31(24), L24402 (doi: 10.1029/2004GL021533)
Lathrop, RG, Lillesand, TM and Yandell, BS (1991) Testing the utility of simple multi-date Thematic Mapper calibration algorithms for monitoring turbid inland waters. Int. J. Remote Sens., 12(10), 20452063 (doi: 10.1080/01431169108955235)
MacFerrin, MJ (2011) Characterizations and recommendations for ASTER GDEM errors on the Greenland ice sheet from Level-2 ATM lidar. Am. Geophys. Union, Fall Meet. [Abstr. C31A-0618]
Mair, D, Nienow, P, Sharp, M, Wohlleben, T and Willis, I (2002) Influence of subglacial drainage system evolution on glacier surface motion: Haut Glacier d’Arolla, Switzerland. J. Geophys. Res., 107(B8), 2175 (doi: 10.1029/2001JB000514)
McMillan, M, Nienow, P, Shepherd, A, Benham, T and Sole, A (2007) Seasonal evolution of supra-glacial lakes on the Greenland Ice Sheet. Earth Planet. Sci. Lett., 262(3–4), 484492 (doi: 10.1016/j.epsl.2007.08.002)
Mernild, SH, Liston, GE, Hiemstra, CA and Steffen, K (2008) Surface melt area and water balance modeling on the Greenland ice sheet 1995–2005. J. Hydromet., 9(6), 11911211 (doi: 10.1175/2008JHM957.1)
Mote, TL (2007) Greenland surface melt trends 1973–2007: evidence of a large increase in 2007. Geophys. Res. Lett., 34(22), L22507 (doi: 10.1029/2007GL031976)
Mottram, R and 7 others (2009) A new regional high-resolution map of basal and surface topography for the Greenland ice-sheet margin at Paakitsoq, West Greenland. Ann. Glaciol., 50(51), 105111 (doi: 10.3189/172756409789097577)
Munro, DS (1990) Comparison of melt energy computations and ablatometer measurements on melting ice and snow. Arct. Alp. Res., 22(2), 153162
Oerlemans, J (1991a) The mass balance of the Greenland ice sheet: sensitivity to climate change as revealed by energy-balance modelling. Holocene, 1(1), 4049
Oerlemans, J (1991b) A model for the surface balance of ice masses: Part 1. Alpine glaciers. Z. Gletscherkd. Glazialgeol., 27/28, 6383
Oerlemans, J and Hoogendoorn, NC (1989) Mass-balance gradients and climatic change. J. Glaciol., 35(121), 399405
Ohmura, A and Reeh, N (1991) New precipitation and accumulation maps for Greenland. J. Glaciol., 37(125), 140148
Ohmura, A, Wild, M and Bengtsson, L (1996) A possible change in mass balance of Greenland and Antarctic ice sheets in the coming century. J. Climate, 9(9), 21242135
Oke, TR (1987) Boundary layer climate, 2nd edn. Routledge, London
Price, SF, Payne, AJ, Catania, GA and Neumann, TA (2008) Seasonal acceleration of inland ice via longitudinal coupling to marginal ice. J. Glaciol., 54(185), 213219 (doi: 10.3189/002214308784886117)
Rignot, E and Kanagaratnam, P (2006) Changes in the velocity structure of the Greenland Ice Sheet. Science, 311(5673), 986990 (doi: 10.1126/science.1121381)
Rignot, E, Box, JE, Burgess, E and Hanna, E (2008) Mass balance of the Greenland ice sheet from 1958 to 2007. Geophys. Res. Lett., 35(20), L20502 (doi: 10.1029/2008GL035417)
Rye, CJ, Arnold, NS, Willis, IC and Kohler, J (2010) Modeling the surface mass balance of a high Arctic glacier using the ERA-40 reanalysis. J. Geophys. Res., 115(F2), F02014 (doi: 10.1029/2009JF001364)
Schoof, C (2010) Ice-sheet acceleration driven by melt supply variability. Nature, 468(7325), 803806 (doi: 10.1038/nature09618)
Selmes, N, Murray, T and James, TD (2011) Fast draining lakes on the Greenland Ice Sheet. Geophys. Res. Lett., 38(L15), L15501 (doi: 10.1029/2011GL047872)
Sneed, WA and Hamilton, GS (2007) Evolution of melt pond volume on the surface of the Greenland Ice Sheet. Geophys. Res. Lett., 34(3), L03501 (doi: 10.1029/2006GL028697)
Sohn, HG, Jezek, KC and Van der Veen, CJ (1998) Jakobshavn Glacier, West Greenland: 30 years of spaceborne observations. Geophys. Res. Lett., 25(14), 26992702 (doi: 10.1029/98GL01973)
Solomon, S and 7 others eds (2007) Climate change 2007: the physical science basis. Contribution of Working Croup I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge
Steffen Kand Box, J (2001) Surface climatology of the Greenland ice sheet: Greenland Climate Network 1995–1999. J. Ceophys. Res., 106(D24), 3395133964 (doi: 10.1029/2001JD900161)
Stroeve, JC, Box, JE and Haran, T (2006) Evaluation of the MODIS (MOD10A1) daily snow albedo product over the Greenland ice sheet. Remote Sens. Environ., 105(2), 155171 (doi: 10.1016/j.rse.2006.06.009)
Tedesco, M (2007) Snowmelt detection over the Greenland ice sheet from SSM/I brightness temperature daily variations. Ceophys. Res. Lett., 34(2), L02504 (doi: 10.1029/2006GL028466)
Tedesco, M and 7 others (2011) The role of albedo and accumulation in the 2010 melting record in Greenland. Environ. Res. Lett., 6(1), 014005 (doi: 10.1088/17489326/6/1/014005)
Thomsen, HH (1986) Photogrammetric and satellite mapping of the margin of the inland ice, West Greenland. Ann. Claciol., 8, 164167
Thomsen, HH, Thorning, L and Braithwaite, RJ (1988) Glacier- hydrological conditions on the Inland Ice north-east of Jacobshavn/Ilulissat, West Greenland. Rapp. Cr0nl. Ceol. Unders. 138.
Van de Wal, RSW and 6 others (2008) Large and rapid melt-induced velocity changes in the ablation zone of the Greenland Ice Sheet. Science, 321(5885), 111113 (doi: 10.1126/science. 1158540)
Van den Broeke, MR, Van As, D, Reijmer, C and Van de Wal, R (2004) Assessing and improving the quality of unattended radiation observations in Antarctica. J. Atmos. Oceanic Technol., 21(9), 14171431
Van den Broeke, M, Smeets, P, Ettema, J, Van der Veen, C, Van de Wal, R and Oerlemans, J (2008) Partitioning of melt energy and meltwater fluxes in the ablation zone of the west Greenland ice sheet. Cryosphere, 2(2), 179189 (doi: 10.5194/tc-2–179–2008)
Van den Broeke, M and 8 others (2009) Partitioning recent Greenland mass loss. Science, 326(5955), 984986 (doi: 10.1126/science.1178176)
Van der Veen, CJ (2007) Fracture propagation as means of rapidly transferring surface meltwater to the base of glaciers. Geophys. Res. Lett., 34(1), L01501 (doi: 10.1029/2006GL028385)
Wakahama, G, Kuroiwa, D, Hasemi, T and Benson, CS (1976) Field observations and experimental and theoretical studies on the superimposed ice of McCall Glacier, Alaska. J. Glaciol., 16(74), 135149
Wright, AP (2005) The impact of meltwater refreezing on the mass balance of a high Arctic glacier. (PhD thesis, University of Bristol)
Zuo, Z and Oerlemans, J (1996) Modelling albedo and specific balance of the Greenland ice sheet: calculations for the S0ndre Str0mfjord transect. J. Glaciol., 42(141), 305317
Zwally, HJ, Abdalati, W, Herring, T, Larson, K, Saba, J and Steffen, K (2002) Surface melt-induced acceleration of Greenland ice- sheet flow. Science, 297(5579), 218222 (doi: 10.1126/science.1072708)
Zwally, HJ and 11 others (2011) Greenland ice sheet mass balance: distribution of increased mass loss with climate warming; 2003–07 versus 1992–2002. J. Glaciol., 57(201), 88102 (doi: 10.3189/002214311795306682)

Related content

Powered by UNSILO

Calibration and evaluation of a high-resolution surface mass-balance model for Paakitsoq, West Greenland

  • Alison F. Banwell (a1), Ian C. Willis (a1), Neil S. Arnold (a1), Alexandra Messerli (a1) (a2), Cameron J. Rye (a1) (a3), Marco Tedesco (a4) and Andreas P. Ahlstrøm (a5)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.