Skip to main content Accessibility help
×
Home

Assessment of multispectral glacier mapping methods and derivation of glacier area changes, 1978–2002, in the central Southern Alps, New Zealand, from ASTER satellite data, field survey and existing inventory data

  • E.F. Gjermundsen (a1) (a2), R. Mathieu (a2) (a3), A. Kääb (a1), T. Chinn (a4), B. Fitzharris (a5) and J.O. Hagen (a1)...

Abstract

We have measured the glacier area changes in the central Southern Alps, New Zealand, between 1978 and 2002 and have compiled the 2002 glacier outlines using an image scene from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Three automated classification methods were tested: (1) band ratio, (2) normalized-difference snow index and (3) supervised classification. The results were compared with the glacier outlines photo-interpreted from the ASTER data, and were further validated using GPS-aided field mapping of selected test glaciers. The ASTER 3/4 band ratio provided the best results. However, all the classification methods failed to extract extensive debris-covered parts of the glaciers. Therefore, the photo-interpreted 2002 outlines were used when comparing with the existing 1978 glacier inventory derived from aerial photographs. Our results show a ∼17% reduction of glacier area, mainly driven by the retreat of the large valley glaciers. Despite the large climatic gradient from west to east, glaciers on both sides of the Main Divide lost similar percentages of area, except Franz Josef and Fox Glaciers which advanced. Smaller glaciers were found to have changed very little in the study period.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Assessment of multispectral glacier mapping methods and derivation of glacier area changes, 1978–2002, in the central Southern Alps, New Zealand, from ASTER satellite data, field survey and existing inventory data
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Assessment of multispectral glacier mapping methods and derivation of glacier area changes, 1978–2002, in the central Southern Alps, New Zealand, from ASTER satellite data, field survey and existing inventory data
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Assessment of multispectral glacier mapping methods and derivation of glacier area changes, 1978–2002, in the central Southern Alps, New Zealand, from ASTER satellite data, field survey and existing inventory data
      Available formats
      ×

Copyright

References

Hide All
Albert, T.H. 2002. Evaluation of remote sensing techniques for ice-area classification applied to the tropical Quelccaya ice cap, Peru. Polar Geogr., 26(3), 210226.
Allen, S., Owens, I. and Sirguey, P.. 2008. Satellite remote sensing procedures for glacial terrain analysis and hazard assessment in the Aoraki Mount Cook region, New Zealand. New Zeal. J. Geol. Geophys., 51(1), 7387.
Andreassen, L.M., Elverøy, H., Kjøllmoen, B., Engeset, R.V. and Haakensen, N.. 2005. Glacier mass-balance and length variation in Norway. Ann. Glaciol., 42, 317325.
Andreassen, L.M., Paul, F., Kääb, A. and Hausberg, J.E.. 2008. Landsatderived glacier inventory for Jotunheimen, Norway, and deduced glacier changes since the 1930s. Cryosphere, 2(2), 131145.
Aniya, M., Sato, H., Naruse, R., Skvarca, P. and Casassa, G.. 1996. The use of satellite and airborne imagery to inventory outlet glaciers of the Southern Patagonia Icefield, South America. Photogramm. Eng. Remote Sens., 62(12), 13611369.
Beedle, M.J. and 7 others. 2008. Improving estimation of glacier volume change: a GLIMS case study of Bering Glacier System, Alaska. Cryosphere, 2(1), 3351.
Bolch, T., Menounos, B. and Wheate, R.. 2010. Landsat-based inventory of glaciers in western Canada, 1985–2005. Remote Sens. Environ., 114(1), 127137.
Bronge, L.B. and Bronge, C..1999. Ice and snow-type classification in Vestfold Hills, East Antarctica, using Landsat-TM data and ground radiometer measurements. Int. J. Remote Sens., 20(2), 225240.
Chinn, T.J. Unpublished. Glacier inventory of New Zealand. Wellington, Institute of Geological and Nuclear Sciences.
Chinn, T.J. 1999. New Zealand glacier response to climate change of the past 2 decades. Global Planet. Change, 22(1–4), 155168.
Chinn, T.J. 2001. Distribution of the glacial water resources of New Zealand. J. Hydrol. (NZ), 40(2), 139187.
Chinn, T.J., Heydenrych, C. and Salinger, M.J.. 2005. Use of the ELA as a practical method of monitoring glacier response to climate in New Zealand’s Southern Alps. J. Glaciol., 51(172), 8595.
Cuffey, K.M. and Paterson, W.S.B.. 2010. The physics of glaciers. Fourth edition. Oxford, Butterworth-Heinemann.
Dyurgerov, M., Meier, M.F. and Bahr, D.B.. 2009. A new index of glacier area change: a tool for glacier monitoring. J. Glaciol., 55(192), 710716.
Fitzharris, B.B., Hay, J.E. and Jones, P.D.. 1992. Behaviour of New Zealand glaciers and atmospheric circulation changes over the past 130 years. Holocene, 2(2), 97106.
Fitzharris, B.B., Lawson, W. and Owens, I.. 1999. Research on glaciers and snow in New Zealand. Progr. Phys. Geogr., 23(4), 469500.
Gao, J. and Liu, Y.. 2001. Applications of remote sensing, GIS and GPS in glaciology: a review. Progr. Phys. Geogr., 25(4), 520540.
Griffiths, G.A. and McSaveney, M.J.. 1983. Distribution of mean annual precipitation across steep land regions of New Zealand. New Zeal. J. Science, 26(2), 197209.
Haeberli, W. 1995. Glacier fluctuations and climate change detection – operational elements of a worldwide monitoring strategy. WMO Bull., 44(1), 2331.
Haeberli, W., Hoelzle, M., Paul, F. and Zemp, M.. 2007. Integrated monitoring of mountain glaciers as key indicators of global climate change: the European Alps. Ann. Glaciol., 46, 150160.
Hall, D.K., Bayr, K.J., Bindschadler, R.A. and Shöner, W.. 2001. Changes in the Pasterze Glacier, Austria, as measured from the ground and space. In Hardy, J. and Frankenstein, S., eds. Proceedings of the 58th Eastern Snow Conference, 17–19 May 2001, Ottawa, Ontario, Canada. Hanover, NH, US Army Cold Regions Research and Engineering Laboratory, 187194.
Hochstein, M.P., Watson, M.I., Malengrenau, B., Nobes, D.C. and Owens, I.. 1998. Rapid melting of the terminal section of the Hooker Glacier (Mt Cook National Park, New Zealand). New Zeal. J. Geol. Geophys., 41(3), 203218.
Hoelzle, M., Chinn, T., Stumm, D., Paul, F. and Haeberli, W.. 2007. The application of glacier inventory data for estimating past climate change effects on mountain glaciers: a comparison between the European Alps and the Southern Alps of New Zealand. Global Planet. Change, 56(1–2), 6982.
Hooker, B.L. and Fitzharris, B.B.. 1999. The correlation between climatic parameters and the retreat and advance of Franz Josef Glacier, New Zealand. Global Planet. Change, 22(1–4), 3948.
Kääb, A. 2005. Remote sensing of mountain glaciers and permafrost creep. Zürich, Universität Zürich. Geographisches Institut. (Schriftenreihe Physische Geographie 48.)
Kääb, A. and 6 others. 2003. Glacier monitoring from ASTER imagery: accuracy and application. EARSeL eProc., 2(1), 4353.
Kargel, J.S. and 16 others. 2005. Multispectral imaging contributions to global land ice measurements from space. Remote Sens. Environ., 99(1–2), 187219.
Khromova, T.E., Osipova, G.B., Tsvetkov, D.G., Dyurgerov, M.B. and Barry, R.G.. 2006. Changes in glacier extent in the eastern Pamir, Central Asia, determined from historical data and ASTER imagery. Remote Sens. Environ., 102(1–2), 2432.
Kirkbride, M.P. and Warren, C.R.. 1999. Tasman Glacier, New Zealand: 20th-century thinning and predicted calving retreat. Global Planet. Change, 22(1–4), 1128.
Klein, A.G. and Isacks, B.L.. 1999. Spectral mixture analysis of Landsat thematic mapper images applied to the detection of the transient snowline on tropical Andean glaciers. Global Planet. Change, 22(1–4), 139154.
Mathieu, R., Chinn, T. and Fitzharris, B.B.. 2009. Detecting the equilibrium-line altitudes of New Zealand glaciers using ASTER satellite images. New Zeal. J. Geol. Geophys., 52(3), 209222.
Nolin, A.W., Dozier, J. and Mertes, L.A.K.. 1993. Mapping alpine snow using a spectral mixture modelling technique. Ann. Glaciol., 17, 121124.
Oerlemans, J. and Reichert, B.K.. 2000. Relating glacier mass balance to meteorological data by using a seasonal sensitivity characteristic. J. Glaciol., 46(152), 16.
Paul, F. and Kääb, A.. 2005. Perspectives on the production of a glacier inventory from multispectral satellite data in Arctic Canada: Cumberland Peninsula, Baffin Island. Ann. Glaciol., 42, 5966.
Paul, F., Kääb, A., Maisch, M., Kellenberger, T. and Haeberli, W.. 2002. The new remote-sensing-derived Swiss glacier inventory: I. Methods. Ann. Glaciol., 34, 355361.
Paul, F., Huggel, C. and Kääb, A.. 2004a. Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers. Remote Sens. Environ., 89(4), 510518.
Paul, F., Kääb, A., Maisch, M., Kellenberger, T. and Haeberli, W.. 2004b. Rapid disintegration of Alpine glaciers observed with satellite data. Geophys. Res. Lett., 31(21), L21402. (10.1029/2004GL020816.)
Paul, F., Kääb, A. and Haeberli, W.. 2007. Recent glacier changes in the Alps observed from satellite: consequences for future monitoring strategies. Global Planet. Change, 56(1–2), 111122.
Purdie, J. and Fitzharris, B.. 1999. Processes and rates of ice loss at the terminus of Tasman Glacier, New Zealand. Global Planet. Change, 22(1–4), 7991.
Quincey, D.J. and Glasser, N.F.. 2009. Morphological and ice-dynamical changes on the Tasman Glacier, New Zealand, 1990– 2007. Global Planet. Change, 68(3), 185197.
Raup, B. and 11 others. 2007. Remote sensing and GIS technology in the Global Land Ice Measurements from Space (GLIMS) Project. Comput. Geosci., 33(1), 104125.
Röhl, K. 2006. Thermo-erosional notch development at fresh-watercalving Tasman Glacier, New Zealand. J. Glaciol., 52(177), 203213.
Shangguan, D. and 9 others. 2006. Monitoring the glacier changes in the Muztag Ata and Konggur mountains, east Pamirs, based on Chinese Glacier Inventory and recent satellite imagery. Ann. Glaciol., 43, 7985.
Sidjak, R.W. and Wheate, R.D.. 1999. Glacier mapping of the Illecillewaet icefield, British Columbia, Canada, using Landsat TM and digital elevation data. Int. J. Remote Sens., 20(2), 273284.
Skidmore, A. K. 1999. Accuracy assessment of spatial information. In Stein, A., van der Meer, F. and Gorte, B., eds. Spatial statistics for remote sensing. Dordrecht, Kluwer Academic Publishers, 197210.
Toutin, T. 2004. Review: Geometric processing of remote sensing images: models, algorithms and methods. Int. J. Remote Sens., 25(10), 18931924.
Williams, R.S. Jr, Hall, D.K. and Chien, J.Y.L.. 1997. Comparison of satellite-derived with ground-based measurements of the fluctuations of the margins of Vatnajökull, Iceland, 1973–92. Ann. Glaciol., 24, 7280.
Willsman, A., Salinger, J.M. and Chinn, T.J.. 2008. Glacier snowline survey 2008. Auckland, National Institute of Water and Atmospheric Research. (Technical Report.)
Winkler, S., Chinn, T.J., Gärtner-Roer, I., Nussbaumer, S.U., Zemp, M. and Zumbühl, H.J.. 2010. An introduction to mountain glaciers as climate indicators with spatial and temporal diversity. Erkunde, 64(2), 97118.
Ye, Q., Kang, S., Chen, F. and Wang, J.. 2006. Monitoring glacier variations on Geladandong mountain, central Tibetan Plateau, from 1969 to 2002 using remote-sensing and GIS technologies. J. Glaciol., 52(179), 537545.

Assessment of multispectral glacier mapping methods and derivation of glacier area changes, 1978–2002, in the central Southern Alps, New Zealand, from ASTER satellite data, field survey and existing inventory data

  • E.F. Gjermundsen (a1) (a2), R. Mathieu (a2) (a3), A. Kääb (a1), T. Chinn (a4), B. Fitzharris (a5) and J.O. Hagen (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed