## References

Aschwanden, A and Blatter, H (2005) Meltwater production due to strain heating in Storglaciaren, Sweden. J. Geophys. Res., 110(F4), F04024 (doi: 10.1029/2005JF000328)

Aschwanden, A and Blatter, H (2009) Mathematical modeling and numerical simulation of polythermal glaciers. J. Geophys. Res., 114(F1), F01027 (doi: 10.1029/2008JF001028)

Bell, RE and 11 others (2011) Widespread persistent thickening of the East Antarctic Ice Sheet by freezing from the base. Science, 331(6024), 1592-1595 (doi: 10.1126/science.1200109)

Bitz, CM and Lipscomb, WH (1999) An energy-conserving thermodynamic model of sea ice. J. Geophys. Res., 104(C7), 15 699-15 677

Bjornsson, H and 6 others (1996) The thermal regime of subpolar glaciers mapped by multi-frequency radio-echo sounding. J. Glaciol., 42(140), 23-32

Blatter, H (1987) On the thermal regime of an Arctic valley glacier: a study of White Glacier, Axel Heiberg Island, NWT, Canada. J. Glaciol., 33(114), 200-211

Blatter, H and Hutter, K (1991) Polythermal conditions in Arctic glaciers. J. Glaciol., 37(126), 261-269

Blatter, H and Kappenberger, G (1988) Mass balance and thermal regime of Laika ice cap, Coburg Island, NWT, Canada. J. Glaciol., 34(116), 102-110

Bueler, E and Brown, J (2009) Shallow shelf approximation as a ‘sliding law’ in a thermomechanically coupled ice sheet model. J. Geophys. Res., 114(F3), F03008 (doi: 10.1029/2008JF001179)

Bueler, E, Lingle, CS, Kallen-Brown, JA, Covey, DN and Bowman, LN (2005) Exact solutions and verification of numerical models for isothermal ice sheets. J. Glaciol., 51(173), 291-306 (doi: 10.3189/172756505781829449)

Bueler, E, Brown, J and Lingle, C (2007) Exact solutions to the thermomechanically coupled shallow-ice approximation: effective tools for verification. J. Glaciol., 53(182), 499-516 (doi: 10.3189/002214307783258396)

Calvo, N, Durany, J and Vazquez, C (1999) Numerical approach of temperature distribution in a free boundary model for polythermal ice sheets. Numer. Math., 83(4), 557-580

Clarke, GKC (2005) Subglacial processes. Annu. Rev. Earth Planet. Sci., 33, 247-276 (doi: 10.1146/annurev.earth.33. 092203.122621)

Duval, P (1977) The role of the water content on the creep rate of polycrystalline ice. IAHS Publ. 118 (Symposium at Grenoble 1975 - Isotopes and Impurities in Snow and Ice), 29-33

Elliott, CM (1987) Error analysis of the enthalpy method for the Stefan Problem. IMA J. Num. Anal., 7(1), 61-71 (doi: 10.1093/imanum/7.1.61)

Ettema, J and 6 others (2009) Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modelling. Geophys. Res. Lett., 36(12), L12501 (doi: 10.1029/2009GL038110)

Fowler, AC (1984) On the transport of moisture in polythermal glaciers. Geophys. Astrophys. Fluid Dyn., 28(2), 99-140

Fowler, AC and Larson, DA (1978) On the flow of polythermal glaciers. I: Model and preliminaryanalysis. Proc. R. Soc. London, Ser. A, 363(1713), 217-242

Furzeland, RM (1980) A comparative study of numerical methods for moving boundary problems. IMA J. Appl. Math., 26(4), 411-429 (doi: 10.1093/imamat/26.4.411)

Glen, JW (1955) The creep of polycrystalline ice. Proc. R. Soc London, Ser. A, 228(1175), 519-538

Greve, R (1997a) A continuum-mechanical formulation for shallow polythermal ice sheets. Philos. Trans. R. Soc. London, Ser. A, 355(1726), 921-974

Greve, R (1997b) Application of a polythermal three-dimensional ice sheet model to the Greenland ice sheet: response to steady-state and transient climate scenarios. J. Climate, 10(5), 901-918

Greve, R and Blatter, H (2009) Dynamics of ice sheets and glaciers. Springer-Verlag, Dordrecht

Harrison, WD (1972) Temperature of a temperate glacier. J. Glaciol., 11(61), 15-29

Holmlund, P and Eriksson, M (1989) The cold surface layer on Storglaciaren. Geogr. Ann. A, 71(3-4), 241-244

Hooke, RLeB, Gould, JE and Brzozowski, J (1983) Near-surface temperatures near and below the equilibrium line on polar and subpolar glaciers. Z. Gletscherkd. Glazialgeol., 19(1), 1-25

Hutter, K (1982) A mathematical model of polythermal glaciers and ice sheets. Geophys. Astrophys. Fluid Dyn., 21(3-4), 201-224

Hutter, K (1983) Theoretical glaciology; material science of ice and the mechanics of glaciers and ice sheets. D Reidel, Dordrecht/Terra Scientific, Tokyo

Hutter, K (1993) Thermo-mechanically coupled ice-sheet response - cold, polythermal, temperate. J. Glaciol., 39(131), 65-86

Huwald, H, Tremblay, L-B and Blatter, H (2005) A multilayer sigma- coordinate thermodynamic sea ice model: validation against Surface Heat Budget of the Arctic Ocean (SHEBA)/Sea Ice Model Intercomparison Project Part 2 (SIMIP2) data. J. Geophys. Res., 110(C5), C05010 (doi: 10.1029/2004JC002328)

Huybrechts, P (1998) Report of the third EISMINT Workshop on model intercomparison. European Science Foundation, Strasbourg

Johnson, J and Fastook, J (2002) Northern Hemisphere glaciation and its sensitivity to basal melt water. Quat. Int., 95-6, 65-74

Katz, RF (2008) Magma dynamics with the enthalpy method: benchmark solutions and magmatic focusing at mid-ocean ridges. J. Petrol., 49(12), 2099-2121 (doi: 10.1093/petrology/egn058)

Liu, IS (2002) Continuum mechanics. Springer, New York

Lliboutry, L (1971) Permeability, brine content and temperature of temperate ice. J. Glaciol., 10(58), 15-29

Lliboutry, L (1976) Physical processes in temperate glaciers. J. Glaciol., 16(74), 151-158

Lliboutry, L and Duval, P (1985) Various isotropic and anisotropic ices found in glaciers and polar ice caps and their corresponding rheologies. Ann. Geophys., 3(2), 207-224

Lfithi, M, Funk, M, Iken, A, Gogineni, S and Truffer, M (2002) Mechanisms of fast flow in Jakobshavn Isbr*, West Greenland. Part III. Measurements of ice deformation, temperature and crossborehole conductivity in boreholes to the bedrock. J. Glaciol., 48(162), 369-385 (doi: 10.3189/172756502781831322)

Marchenko, S, Romanovsky, V and Tipenko, G (2008) Numerical modeling of spatial permafrost dynamics in Alaska. In Kane, DL and Hinkel, KM eds. Proceedings of the 9th International Conference on Permafrost, 29 June-3 July 2008, Fairbanks, AK, USA, Vol. 2. Institute of Northern Engineering, Fairbanks, 1125-1130

Meyer, GH (1973) Multidimensional Stefan problems. SIAM J. Num. Anal., 10(3), 522-538 (doi: 10.1137/0710047)

Moore, JC and 8 others (1999) High-resolution hydrothermal structure of Hansbreen, Spitsbergen, mapped by ground- penetrating radar. J. Glaciol., 45(151), 524-532

Moran, MJ and Shapiro, HN (2006) Fundamentals of engineering thermodynamics, 5th edn. Wiley, Chichester

Motoyama, H (2007) The second deep ice coring project at Dome Fuji, Antarctica. Sci. Drilling, 5(5), 41-43 (doi: 10.2204/ iodp.sd.5.05.2007)

Murray, T, Stuart, GW, Fry, M, Gamble, NH and Crabtree, MD (2000) Englacial water distribution in a temperate glacier from surface and borehole radar velocity analysis. J. Glaciol., 46(154), 389398 (doi: 10.3189/172756500781833188)

Nedjar, B (2002) An enthalpy-based finite element method for nonlinear heat problems involving phase change. Comput. Struct., 80(1), 9-21 (doi: 10.1016/S0045-7949(01)00165-1)

Notz, D and Worster, MG (2006) A one-dimensional enthalpy model of sea ice. Ann. Glaciol., 44, 123-128 (doi: 10.3189/172756406781811196)

Ockendon, J, Howison, S, Lacey, A and Movchan, A (2003) Applied partial differential equations, revised edn. Oxford University Press, Oxford

Ohmura, A (2001) Physical basis for the temperature-based melt- index method. J. Appl. Meteorol., 40(4), 753-761

Parrenin, F and 26 others (2007) The EDC3 chronology for the EPICA Dome C ice core. Climate Past, 3(3), 485-497

Paterson, WSB (1994) The physics of glaciers, 3rd edn. Elsevier, Oxford

Payne, AJ and 10 others (2000) Results from the EISMINT model intercomparison: the effects of thermomechanical coupling. J. Glaciol., 46(153), 227-238 (doi: 10.3189/172756500781832891)

Petrenko, VF and Whitworth, RW (1999) Physics of ice. Oxford University Press, Oxford

Pettersson, R, Jansson, P and Blatter, H (2004) Spatial variability in water content at the cold-temperate transition surface of the polythermal Storglaciaren, Sweden. J. Geophys. Res., 109(F2), F02009 (doi: 10.1029/2003JF000110)

Pham, QT (1995) Comparison of general-purpose finite-element methods for the Stefan problem. Num. Heat Trans. B, 27(4), 417-435 (doi: 10.1080/10407799508914965)

Phillips, T, Rajaram, H and Steffen, K (2010) Cryo-hydrologic warming: a potential mechanism for rapid thermal response of ice sheets. Geophys. Res. Lett., 37(20), L20503 (doi: 10.1029/2010GL044397)

Richet, P (2001) The physical basis of thermodynamics: with applications to chemistry. Kluwer, New York

Schoof, C (2010) Ice-sheet acceleration driven by melt supply variability. Nature, 468(7325), 803-806 (doi: 10.1038/nature09618)

Schytt, V (1968) Notes on glaciological activities in Kebnekaise, Sweden during 1966 and 1967. Geogr. Ann., 50A(2), 111-120

Shamsundar, N and Sparrow, EM (1975) Analysis of multidimensional conduction phase change via the enthalpy model. J. Heat Transfer, 97(3), 333-340 (doi: 10.1115/1.3450375)

Siegert, MJ, Carter, S, Tabacco, I, Popov, S and Blankenship, DD (2005) A revised inventory of Antarctic subglacial lakes. Antarct. Sci., 17(3), 453-460 (doi: 0.1017/S0954102005002889)

Steinemann, S (1954) Results of preliminary experiments on the plasticity of ice crystals. J. Glaciol., 2(16), 404-413

Vallon, M, Petit, JR and Fabre, B (1976) Study of an ice core to the bedrock in the accumulation zone of an Alpine glacier. J. Glaciol., 17(75), 13-28

Voller, V and Cross, M (1981) Accurate solutions of moving boundary problems using the enthalpy method. Int. J. Heat Mass Transfer, 24(3), 545-556 (doi: 10.1016/0017-9310(81)90062-4)

Voller, VR, Cross, M and Markatos, NC (1987) An enthalpy method for convection/diffusion phase change. Int. J. Num. Meth. Eng., 24(1), 271-284 (doi: 10.1002/nme.1620240119)

Voller, VR, Swenson, JB, Kim, W and Paola, C (2006) An enthalpy method for moving boundary problems on the earth’s surface. Int. J. Num. Meth. Heat Fluid Flow, 16(5), 641-654 (doi: 10.1108/09615530610669157)

White, RE (1981) An enthalpy formulation of the Stefan problem. SIAM J. Num. Anal., 19(6), 1129-1157

Winkelmann, R and 6 others (2011) The Potsdam Parallel Ice Sheet Model (PISM-PIK). Part 1: Model description. Cryosphere, 5(3), 715-726 (doi: 10.5194/tc-5-715-2011)