Skip to main content Accessibility help
×
Home

Airborne surface profiling of glaciers: a case-study in Alaska

  • Κ. A. Echelmeyer (a1), W. D. Harrison (a1), C. F. Larsen (a1), J. Sapiano (a1), Mitchell J. E. (a1), J. De Mallie (a1), B. Rabus (a1), G. Adalgeirsdóttir (a1) and L. Sombardier (a1)...

Abstract

A relatively lightweight and simple airborne system for surface elevation profiling of glaciers in narrow mountain valleys has been developed and tested. The aircraft position is determined by kinematic global positioning system (GPS) methods. The distance to the glacier surface is determined with a laser ranger. The accuracy is about 0.3 m, sufficient to permit future changes to be observed over short time intervals. Long-term changes can be estimated by comparison of profiles with existing maps. Elevation profiles obtained in 1993–94 from three glaciers in central and south-central Alaska are compared with maps made about 1950. The resulting area-averaged, seasonally corrected thickness changes during the interval are: Gulkana Glacier (central Alaska Range)–11 m, Worthington Glacier (central Chugach Mountains) +7 m, and Bear Lake Glacier (Kenai Mountains) −12 m. All three glaciers retreated during the interval of comparison. The estimated uncertainty in the average thickness change is ±5 m. which is mainly due to errors in the existing maps. Constraints on the accuracy of the maps are obtained by profiling in proglacial areas.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Airborne surface profiling of glaciers: a case-study in Alaska
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Airborne surface profiling of glaciers: a case-study in Alaska
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Airborne surface profiling of glaciers: a case-study in Alaska
      Available formats
      ×

Copyright

References

Hide All
American Geographical Society. 1960. Nine glacier maps, northwestern North America. New York, American Geographical Society. (AGS Special Publication 34.)
Blankenship,, D. D., Bell,, R. E., Childers,, V. A. and Hodge,, S. M. 1992. Airborne measurement of ice sheet elevation. [Abstract.] EOS, 73 (43), Supplement. 129.
Bredthauer,, S. R. and Harrison,, W. D. 1984. Impact of glaciers on long-term basin water yield. In Bredthauer,, S. R., ed. Alaska’s water: a critical resource. Fairbanks, AK, University of Alaska. Institute of Water Resources, 5159.(Report IWR-106.)
Chambers,, F. B., Marcus, M. G. and Thompson,, L. S. 1991. Mass balance of West Gulkana Glacier. Geogr. Rev., 81 (1), 7086.
Clarke,, T. S. 1986. Glacier runoff, balance and dynamics in the upper Susitna River basin, Alaska. (M. Sc. thesis, University of Alaska-Fairbanks.)
Douglas,, B. C., R. E., cheney, Miller,, L. Agreen,, R. W., Carter,, W. E. and Robertson,, D. S. 1990. Greenland ice sheet is it growing or shrinking? Science, 248 (4953), 288.
Finsterwalder,, R. 1954. Photogrammetry and glacier research with special reference to glacier retreat in the eastern Alps. J. Glaciol., 2 (15), 306315.
Garvin,, J. B. and Williams,, R. S. Jr., 1993. Geodetic ariborne laser altimetry of Breidamerkurjökull and Skeidarárjökull, Iceland, and Jakobshavns Isbrae, West Greenland. Anne. Glaciol., 17, 379385.
Goldstein,, R. M., Engelhardt,, H. Kamb, B. and Frolich,, R. M. 1993. Satellite radar interferometry for monitoring ice sheet motion: appllcation to an Antarctic ice stream. Science, 262 (5139), 15251530.
Haeberli,, W., Hoelze, M. and Bösch,, H. comps. 1994. Glacier Mass Balance Bulletin. Bulletin No. 3 (1992–1993). Wallingford, Oxon, IAHS Press; Nairobi, UNEP: Paris, Unesco.
Heinrichs,, T. A., Mayo,, L. R. Trabant, D. С. and March,, R. S. 1994. Observations of the surge-type Black Rapids Glacier, Alaska, during a quiescent perid, 1970–92. U.S. Geol. Surv. Open File Rep. 94512.
Heinrichs,, T. A., Mayo,, L. R., Echelmeyer,, K. A. and Harrison,, W. D. 1996. Quiescent-phase evolution of a surge-type glacier: Black Rapids Glacier, Alaska, U.S.A. J. Glaciol., 42 (140), 110122.
Krabill,, W. B. and Martin,, C. F. 1987. Aircraft positioning using Global Positioning System carrier phase data. J. Inst. Navig., 34 (1), 121.
Krabill,, W.B., Thomas,, R. H. С.. Martin., F. Swift, R. N. and Frederick,, E. B. 1995. Accuracy of airborne laser altimetry over the Greenland ice sheet. Int. J. Remote Sensing, 16 (7), 12111222.
Lingle,, C. S., Lee., L. Zwally, Η. J. and Seiss,, T. C. 1994. Recent elevation increase on Lambert Glacier, Antarctica, from orbit cross-over analysis of satellite-radar altimetry. Ann. Glaciol., 20, 2632.
Mader,, G. L. and Lucas,, J. R. 1989. Verification of airborne positioning using global positioning system carrier phase measurements. J. Geephys. Res., 94(B8). 10,17510,181.
Marcus,, M.G. and Reynolds,, W. J., eds. 1988. Glacier and climate studies, West Gulkana Glacier and environs, Alaska. West Point, NY, U.S. Military Academy (Res. Pap. 1.) and Tempe, AZ., Arizona State University. Department of Geography. (Publ. Ser. 4.)
Mayo,, L. R. and Trabant,, D. C. 1984. Observed and predicted effects of climate change on Wolverine Glacier, southern Alaska. In MeBeath,, J. H., Juday,, G. P., Weller, G. and Murray,, M. eds. The potential effects of carbon dioxide-induced climatic changes in Alaskа. Fairbanks, AK. University of Alaska. School of Agriculture and Land Resources Management, 114–123. (Misc. Publ. 831.)
Mayo,, L. R. and Trabant,, D. C. 1986. Recent growth of Gulkana Glacier, Alaska Range, and its to glacier-fed river runoff. U.S. Geol. Surv. Water-Supply Pap. 2290, 9199.
Mayo,, L. R., March,, R. S. and Trabant., D. С. 1985. Growth of Wolverine Glacier, Alaska: determined from surface altitude measurements, 1974 and 1985. In Dwight,, L. P., ed. Resolving Alaska’s water resources conficts. Fairbanks, Ak, University of Alaska, Engineering Experiment Station, Institute of Water Resources, 113121, (Report IWR-108.)
Meier,, M. F. 1984. Contribution of small glaciers to global sea level. Science, 226 (4681), 14181421.
Meier,, M. F. 1990. Reduced rise in sea level. Nature, 343 (6254), 115116.
Oerlemans,, J. and Fortuin., J. Р. F. 1992. Sensitivity of glaciers and small ice caps to greenhouse warming. Science. 258 (5079), 115117.
Schwitter,, M. P. and Raymond,, C. F. 1993. Changes in the longitudinal profiles of glaciers during advance and retreat. J. Glaciol., 39 (133), 582590.
Small,, J.B. and Wharton,, L. C. 1969. Vertical displacements determined by surveys after the Alaskan earthquake of March, 1964. In Leipold,, L., ed. The Prince William Sound Alaska, earthquake of 1964 and aftershocks. Vol. III. Washington, DC. U.S. Coast and Geodetic Survey, 2133. (C&GS Publication 103.)
Thomas., R., Krabill,, W. Fredcrick, E. and Jezek., K 1995. Thickening of Jakobshavns Isbrae. West Greenland, measured by airborne laser altimetry. Ann. Glaciol., 21, 259262.
Zwally,, H. J., Brenner,, A. C., Major,, J. A., Bindschadler,, R. A. and Marsh,, J. G., 1989. Growth of Greenland ice sheet: measurement. Science, 246 (4937), 15871589.

Airborne surface profiling of glaciers: a case-study in Alaska

  • Κ. A. Echelmeyer (a1), W. D. Harrison (a1), C. F. Larsen (a1), J. Sapiano (a1), Mitchell J. E. (a1), J. De Mallie (a1), B. Rabus (a1), G. Adalgeirsdóttir (a1) and L. Sombardier (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed