Skip to main content Accessibility help
×
Home

Air temperature distribution and energy-balance modelling of a debris-covered glacier

  • THOMAS E. SHAW (a1), BEN W. BROCK (a1), CATRIONA L. FYFFE (a2), FRANCESCA PELLICCIOTTI (a1) (a3), NICK RUTTER (a1) and FABRIZIO DIOTRI (a4)...

Abstract

Near-surface air temperature is an important determinant of the surface energy balance of glaciers and is often represented by a constant linear temperature gradients (TGs) in models. Spatio-temporal variability in 2 m air temperature was measured across the debris-covered Miage Glacier, Italy, over an 89 d period during the 2014 ablation season using a network of 19 stations. Air temperature was found to be strongly dependent upon elevation for most stations, even under varying meteorological conditions and at different times of day, and its spatial variability was well explained by a locally derived mean linear TG (MG–TG) of −0.0088°C m−1. However, local temperature depressions occurred over areas of very thin or patchy debris cover. The MG–TG, together with other air TGs, extrapolated from both on- and off-glacier sites, were applied in a distributed energy-balance model. Compared with piecewise air temperature extrapolation from all on-glacier stations, modelled ablation, using the MG–TG, increased by <1%, increasing to >4% using the environmental ‘lapse rate’. Ice melt under thick debris was relatively insensitive to air temperature, while the effects of different temperature extrapolation methods were strongest at high elevation sites of thin and patchy debris cover.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Air temperature distribution and energy-balance modelling of a debris-covered glacier
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Air temperature distribution and energy-balance modelling of a debris-covered glacier
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Air temperature distribution and energy-balance modelling of a debris-covered glacier
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence: T. E. Shaw <thomas.shaw@northumbria.ac.uk>

References

Hide All
Arnold, NS, Rees, WG, Hodson, AJ and Kohler, J (2006) Topographic controls on the surface energy balance of a high Arctic valley glacier. J. Geophys. Res., 111(F2), F02011 (doi: 101029/2005JF000426)
Ayala, A, Pellicciotti, F and Shea, JM (2015) Modelling 2 m air temperatures over mountain glaciers: exploring the influence of katabatic cooling and external warming. J. Geophys. Res. Atmos., (120), 119 (doi: 101002/2015JD023137)
Brock, BW and Arnold, NS (2000) A spreadsheet-based (Microsoft Excel) point surface energy balance model for glacier and snow melt studies. Earth Surf. Process. Landf., 25, 649658
Brock, BW and et al. (2010) Meteorology and surface energy fluxes in the 2005–2007 ablation seasons at the Miage debris-covered glacier, Mont Blanc Massif, Italian Alps. J. Geophys. Res., 115(D9), D09106 (doi: 101029/2009JD013224)
Brutsaert, W (1975) On a derivable formula for longwave radiation from clear sky. Water Resour. Res., 11(3), 742744
Deline, P (2005) Change in surface debris cover on Mont Blanc massif glaciers after the “Little Ice Age” termination. Holocene, 15(2), 302309 (doi: 101191/0959683605hl809rr)
Foster, LA, Brock, BW, Cutler, MEJ and Diotri, F (2012) Instruments and Methods A physically based method for estimating supraglacial debris thickness from thermal band remote-sensing data. J. Glaciol., 58(210), 677691 (doi: 103189/2012JoG11J194)
Fujita, K and Sakai, A (2000) Air temperature environment on the debris-covered area of Lirung Glacier, Langtang Valley, Nepal Himalayas. IAHS Publ. 264 (Symposium at Seattle 2000 – Debris-Covered Glaciers), 8388
Fyffe, CL and et al. (2014) A distributed energy-balance melt model of an alpine debris-covered glacier. J. Glaciol., 60(221), 587602 (doi: 103189/2014JoG13J148)
Gardner, AS and et al. (2009) Near-surface temperature temperature gradients over arctic glaciers and their implications for temperature downscaling. J. Clim., 22(16), 42814298 (doi: 101175/2009JCLI28451)
Greuell, W and Böhm, R (1998) 2 m temperatures along melting mid-latitude glaciers, and implications for the sensitivity of the mass balance to variations in temperature. J. Glaciol., 44(146), 920
Han, H and et al. (2008) Near-surface meteorological characteristics on the Koxkar Baxi Glacier, Tianshan. J Glaciol. Geocryol., 30, 967975
Han, H, Wng, J, Wei, J and Liu, S (2010) Backwasting rate on debris-covered Koxkar glacier, Tuomuer mountain, China. J. Glaciol., 56(196), 287296 (doi: 10.3189/002214310791968430)
Immerzeel, WW, Petersen, L, Ragettli, S and Pellicciotti, F (2014) The importance of observed gradients of air temperature and precipitation for modeling runoff from a glacierised watershed in the Nepalese Himalayas. Water Resour. Res., 50(3), 22122226 (doi: 10.1002/2013WR014506)
Juen, M, Mayer, C, Lambrecht, A, Han, H and Liu, S (2014) Impact of varying debris cover thickness on ablation: a case study for Koxkar Glacier in the Tien Shan. Cryosphere, 8(2), 377386 (doi: 105194/tc-8-377-2014)
Juszak, I and Pellicciotti, F (2013) A comparison of parameterizations of incoming longwave radiation over melting glaciers: model robustness and seasonal variability. J. Geophys. Res. Atmos., 118(8), 30663084 (doi: 101002/jgrd50277)
Li, X and Williams, MW (2008) Snowmelt runoff modelling in an arid mountain watershed, Tarim Basin, China. Hydrol. Proc., 22, 39313940 (doi: 10.1002/hyp)
Machguth, H, Paul, F, Hoelzle, M and Haeberli, W (2006) Distributed glacier mass-balance modelling as an important component of modern multi-level glacier monitoring. Ann. Glaciol., 43, 335343 (doi: 10.3189/172756406781812285)
Marshall, SJ, Sharp, MJ, Burgess, DO and Anslow, FS (2007) Near-surface-temperature temperature gradients on the Prince of Wales Icefield, Ellesmere Island, Canada: implications for regional downscaling of temperature. Int. J. Climatol, 27, 385398. (doi: 101002/joc)
Marty, C and Philipona, R (2000) The clear-sky index to separate clear-sky from cloudy-sky situations in climate research. Geophys. Res. Lett., 27(17), 26492652
Mihalcea, C and et al. (2006) Ice ablation and meteorological conditions on the debris-covered area of Baltoro glacier, Karakoram, Pakistan. Ann. Glaciol., 43, 292300 (doi: 10.3189/172756406781812104)
Minder, JR, Mote, PW and Lundquist, JD (2010) Surface temperature temperature gradients over complex terrain: lessons from the Cascade Mountains. J. Geophys. Res., 115(D14), D14122 (doi: 101029/2009JD013493)
Müller, BF and Keeler, CM (1969) Errors in short-term ablation measurements on melting ice surfaces. J. Glaciol., 8(52), 91–105
Munro, BDS (1989) Surface roughness and bulk heat transfer on a glacier: comparison with eddy correlation. J. Glaciol., 35(121), 343348
Nolin, AW, Phillippe, J, Jefferson, A and Lewis, SL (2010) Present-day and future contributions of glacier runoff to summertime flows in a Pacific Northwest watershed: implications for water resources. Water Resour. Res., 46(12), 114 (doi: 101029/2009WR008968)
Østrem, G (1959) Ice melting under a thin layer of Moraine, and the existence of ice cores in moraine ridges. Geogr. Ann., 41(4), 228230
Pellicciotti, F and et al. (2005) An enhanced temperature-index glacier melt model including the shortwave radiation balance: development and testing for Haut Glacier d ‘Arolla, Switzerland. J. Glaciol., 51(175), 573587
Pellicciotti, F, Raschle, T, Huerlimann, T, Carenzo, M and Burlando, P (2011) Transmission of solar radiation through clouds on melting glaciers: a comparison of parameterizations and their impact on melt modelling. J. Glaciol., 57(202), 367381
Petersen, L and Pellicciotti, F (2011) Spatial and temporal variability of air temperature on a melting glacier: atmospheric controls, extrapolation methods and their effect on melt modeling, Juncal Norte Glacier, Chile. J. Geophys. Res., 116(D23), D23109 (doi: 101029/2011JD015842)
Petersen, L, Pellicciotti, F, Juszak, I, Carenzo, M and Brock, BW (2013) Suitability of a constant air temperature temperature gradient over an Alpine glacier: testing the Greuell and Böhm model as an alternative. Ann. Glaciol., 54(63), 120130 (doi: 103189/2013AoG63A477)
Ragettli, S and et al. (2015) Unraveling the hydrology of a Himalayan watershed through integration of high resolution in- situ data and remote sensing with an advanced simulation model. Adv. Water Resour., 78, 94111 (doi: 101016/jadvwatres201501013)
Reda, I and Andreas, A (2008) Solar Position Algorithm for Solar Radiation Applications, National Renewable Energy Laboratory, Technical Report NREL/TP-560-34302, US Department of Energy, Oak Ridge
Reid, TD and Brock, BW (2010) An energy-balance model for debris-covered glaciers including heat conduction through the debris layer. J. Glaciol., 56(199), 903916
Reid, TD and Brock, BW (2014) Assessing ice-cliff backwasting and its contribution to total ablation of debris-covered Miage glacier, Mont Blanc massif, Italy. J. Glaciol., 60(219), 313 (doi: 103189/2014JoG13J045)
Shea, JM and Moore, RD (2010) Prediction of spatially distributed regional-scale fields of air temperature and vapor pressure over mountain glaciers. J. Geophys. Res., 115(D23), D23107 (doi: 101029/2010JD014351)
Takeuchi, Y, Kayastha, RB, Naito, N, Kadota, T and Izumi, K (2001) Comparison of meteorological features in the debris-free and debris-covered areas of Khumbu Glacier, Nepal Himalayas, in the premonsoon season, 1999. Bull. Glaciol. Res., 18, 1518
Wheler, BA, Macdougall, AH, Petersen, EI and Kohfeld, KE (2014) Effects of temperature forcing provenance and extrapolation on the performance of an empirical Glacier-Melt model. Arct. Antarct. Alpine Res., 46(2), 379393

Keywords

Related content

Powered by UNSILO

Air temperature distribution and energy-balance modelling of a debris-covered glacier

  • THOMAS E. SHAW (a1), BEN W. BROCK (a1), CATRIONA L. FYFFE (a2), FRANCESCA PELLICCIOTTI (a1) (a3), NICK RUTTER (a1) and FABRIZIO DIOTRI (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.