Skip to main content Accessibility help
×
Home

Accumulation and flow rates of ice on Chhota Shigri glacier, central Himalaya, using radio-active and stable isotopes

  • V. N. Nijampurkar (a1) and D. K. Rao (a1)

Abstract

Systematic isotopic studies based on natural and artificial radio-isotopes (32Si, 137Cs), stable isotopes (δ18O) and total β activity measurements have been carried out on Chhota Shigri glacier, Himachal Pradesh, central Himalaya, to study the dynamics of the ice, meltwater composition and to identify the deposition of the Chernobyl fall-out in the Himalayan region.

Using 32Si concentrations, the snout ice has been dated at ~ 250 years, based on which the past average surface ice-flow rate has been estimated as ~ 28 m year−1. Based on δ18O variations, in a shallow ice core, the accumulation rate of the ice has been estimated at ~520kgm−2 year−1. 32Si measurements of snout ice and englacial meltwaters indicate that at least 55% of the snow meltwater mixed with 45% of the old ice-melt water that emerged from englacial streams in the month of August 1987. Deposition of the artificial radionuclide (137Cs) and the very high total β activity observed in snow samples on Chhota Shigri glacier give the first evidence of Chernobyl fall-out deposition in the Indian Himalaya.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Accumulation and flow rates of ice on Chhota Shigri glacier, central Himalaya, using radio-active and stable isotopes
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Accumulation and flow rates of ice on Chhota Shigri glacier, central Himalaya, using radio-active and stable isotopes
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Accumulation and flow rates of ice on Chhota Shigri glacier, central Himalaya, using radio-active and stable isotopes
      Available formats
      ×

Copyright

References

Hide All
Ambach, W., Dansgaard, W., Eisner, H. and Moller, J. 1968. The altitude effect on the isotopic composition of precipitation and glacier ice in the Alps. Tellus, 20, 595600.
Ambach, W., Eisner, H. and Pessl, K. 1972. Isotopic oxygen composition of firn, old snow and precipitation in Alpine regions. Z. Gletscherkd. Glazialgeol., 8 (1–2), 125135.
Ambach, W., Rehwald, W., Blumthaler, M. and Eisner, H. 1987. Chernobyl fallout on Alpine glaciers: a new reference horizon for dating. EOS, 68 (45), 1577.
Ambach, W., Rehwald, W., Blumthaler, M., Eisner, H. and Brunner, P. 1989. Chernobyl fallout on Alpine glaciers. Health Phys., 56 (1), 2731.
Bhattacharya, S. K., Gupta, S. K. and Krishnamurthy, R. V. 1985. Oxygen and hydrogen isotopic ratios in ground waters and river waters from India. Proc. Indian Acad. Sei. (Earth Planet. Sei.), 94 (3), 283295.
Bhutiyani, M. R. and Sharma, M. C. 1989. A report on the glaciological studies carried out on Chhota Shigri glacier. Technical Report of the Multi-disciplinary Glacier Expedition to Chhota Shigri glacier. New Delhi, Department of Science and Technology, 203236. (Report 3.)
Bondietti, E., Brantley, A.J.N. and Rengarajan, C. 1988. Size distributions and growth of natural and Chernobyl derived submicron aerosols in Tennessee. J. Environ. Radioactivity, 6, 99120.
Csongor, E., Kiss, A. Z., Nyako, B. M. and Somorjai, E. 1986. Chernobyl fallout in Debrecen, Hungary. Nature, 324 (6094), 216.
Dansgaard, W., Johnsen, S. J., Meiler, J. and Langway, C. C., Jr. 1969. One thousand centuries of climatic record from Camp Century on the Greenland ice sheet. Science, 166, 377381.
Delmas, R., Brait, M. and Legrand, M. 1982. Chemistry of south polar snow. J. Geophys. Res., 87 (C6), 43144318.
Fry, F. A., Clarke, R. H. and O’Riordam, M. C. 1986. Early estimates of UK radiation doses from the Chernobyl reactor. Nature, 321 (6067), 193195.
Grabczak, J., Niewodniczanski, J. and Rόżanski, K. 1983. Isotope stratification in high mountain glaciers: examples from the Peruvian Andes and Himalaya. J. Glaciol., 29 (103), 417424.
Haeberli, W., Gäggeler, H. Baltensperger, U., Jost, D. and Schotterer, U. 1988. The signal from the Chernobyl accident in high-altitude firn areas of the Swiss Alps. Ann. Glaciol., 10, 4851.
Hofmann, H. J., Bonani, G., Suter, M., Wolfli, W., Zimmermann, D. and von Gunten, H. R. In press. A new determination of the half-life of 32Si. Nucl. Instrum. Methods.
Jouzel, J. and 6 others. 1987. Vostok ice core: a continuous isotope temperature record over the last climatic cycle (160,000 years). Nature, 329 (6138), 403408.
Lal, D. and Peters, B. 1967. Cosmic ray produced radioactivity on the Earth. In Encyclopedia of physics, Vol. XLV1\2. Berlin, Springer-Verlag, 551612.
Mélières, M.A., Pourchet,, M. Pinglot, J. F., Bouchez, R. and Piboule, M. 1988. Chernobyl 134Cs, 137Cs and 2l0Pb in high mountain lake sediment; measurements and modeling of mixing process. J. Geophys. Res., 93 (D6), 70557061.
Mitchell, N., Steele, T. and Steele, A. K. 1988. The marine impact of 134Cs and 137Cs from the Chernobyl reactor accident. J. Environ. Radioactivity, 6, 163175.
Niewodniczanski, J., Grabczak, J., Baranski, L. and Rzepka, J. 1981. The altitude effect on the isotopic composition of snow in high montains. J. Glaciol., 27 (95), 99111.
Nijampurkar, V. N. 1974. Applications of cosmic ray produced isotope silicon-32 to hydrology with special reference to dating of groundwaters. (Ph.D. thesis, University of Bombay, India.)
Nijampurkar, V. N. 1985. Basal flow rate of Changme-Khangpu glacier, Sikkim Himalaya based on 32Si and 210Pb chronology. Proc. Indian Acad. Sei. (Earth Planet. Set.), 94 (2), 8389.
Nijampurkar, V. N. and Bhandari, N. 1984. Oxygen isotopic ratios of some Himalayan glaciers. Tellus, 36B, 300302.
Nijampurkar, V. N., Bhandari, N., Vohra, C. P. and Krishnan, V. 1982. Radiometric chronology of Neh-nar glacier, Kashmir. J. Glaciol., 28 (98), 91105.
Nijampurkar, V. N., Bhandari, N., Ramesh, R. and Bhattacharya, S. K. 1986. Climatic significance of D/H ratios of a temperate glacier in Sikkim. Curr. Set., 55 (18), 910912.
Nijampurkar, V. N., Sarin, M. M. and Rao, D. K. In press. Chemical composition of snow and ice on Chhota Shigri glacier, central Himalaya. Tellus.
Nishizawa, K. and 7 others. 1986. 13,I in milk and rain after Chernobyl. Nature, 324 (6095), 308.
Pourchet, M., Pinglot, J. F., Reynaud, L. and Holds-worth, G. 1988. Identification of Chernobyl fall-out as a new reference level in Northern Hemisphere glaciers. J. Glaciol., 34 (1 17), 183187.
Sadasivan, S. and Mishra, U. C. 1986. Radioactive fallout swipe samples from Chernobyl. Nature, 324 (6092), 23.
Shukla, P. N., Bhandari, N., Nijampurkar, V. N., Rao, D. K., Puri, V. M. K. and Sharma, S. 1983. Ice accumulation rate in Changme-Khangpu glacier, Sikkim. Proc. Indian Acad. Sei. (Earth Planet. Sei.), 92 (3), 255260.
Somayajulu, B. L. K., Rengarajan, R., Lai, D., Weiss, R. F. and Craig, H. 1987. GEOSEC Atlantic 32Si profiles. Earth Planet. Sei. Lett., 85, 329342.
Surendarkumar, K., Rai, H., Purohit, K. K., Rawat, B. R. S. and Mundepi, A. K. 1987. About Chhota Shigri glacier. Technical Report of the Multi-disciplinary Expedition to Chhota Shigri glacier. New Delhi, Department of Science and Technology. (Report I.)
Thompson, L. G., Wu, X., Mosley-Thompson, E. M. and Xie, Z. 1988. Climatic records from the Dunde ice cap, China. Ann. Glaciol., 10, 178182.
Thompson, L. G. and 9 others. 1990. Glacial stage ice-core records from the subtropical Dunde ice cap, China. Ann. Glaciol., 14, 288297.
Von Gunten, H. R., Rössler, E. and Gäggeler, H. 1983. Dating of ice cores from Vernagtferner (Austria) with fission products and lead-210. Z. Gletscherkd. Glañalgeol., 18 (1), 1982, 3745.
Wake, C. P. 1989. Glaciochemical investigations as a tool for determining the spatial and seasonal variation of snow accumulation in the central Karakoram, northern Pakistan. Ann. Glaciol., 13, 279284.
Wushiki, H. 1977. Altitude effect on the deuterium content of the local rains and snows in the Himalayas. Seppyo, 39, Special Issue, 5759.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed