Skip to main content Accessibility help
×
Home

Abrupt glacier motion and reorganization of basal shear stress following the establishment of a connected drainage system

  • Jeffrey L. Kavanaugh (a1) and Garry K. C. Clarke (a1)

Abstract

Three episodes of strong basal motion occurred at Trapridge Glacier, Yukon Territory, Canada, on 11 June 1995 following the establishment of a connected subglacial drainage system. Responses to these “spring events” are noted in the records for 42 instruments and were recorded throughout the ∼60 000 m2 study area. Strong basal motion during the events is indicated by ploughmeter, load-bolt and vertical-strain records, and abrupt pressure changes in several transducer records denote damage caused by extreme pressure pulses. These pressure pulses, generated by the abrupt basal motion, also resulted in the failure of seven pressure sensors. Records for pressure, turbidity and conductivity sensors indicate that basal drainage patterns did not change significantly during the events. Geophone records suggest that the episodes of basal motion were precipitated by the gradual failure of a “sticky spot” following hydraulic connection of part of the study area. This failure resulted in the transfer of basal stress to the unconnected region of the bed during the course of the events. No evidence for strong basal motion is seen in the instrument records for several weeks following the events, suggesting that the mechanical adjustments resulted in a stable configuration of basal stresses. This event illustrates how unstable situations can be quickly accommodated by mechanical adjustments at the glacier bed.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Abrupt glacier motion and reorganization of basal shear stress following the establishment of a connected drainage system
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Abrupt glacier motion and reorganization of basal shear stress following the establishment of a connected drainage system
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Abrupt glacier motion and reorganization of basal shear stress following the establishment of a connected drainage system
      Available formats
      ×

Copyright

References

Hide All
Alley, R. B. 1993. In search of ice-stream sticky spots. J. Glaciol., 39(133), 447454.
Alley, R. B. 1996. Towards a hydrologic model for computerized ice-sheet simulations. Hydrol. Processes, 10, 649660.
Blake, E., Clarke, G. K. C. and Gérin, M. C.. 1992. Tools for examining subglacial bed deformation. J. Glaciol., 38(130), 388396.
Blake, E. W., Fischer, U. H. and Clarke, G. K. C.. 1994. Direct measurement of sliding at the glacier bed. J. Glaciol., 40(136), 595599.
Boulton, G. S. and Hindmarsh, R. C. A.. 1987. Sediment deformation beneath glaciers: rheology and geological consequences. J. Geophys. Res., 92(B9), 90599082.
Boulton, G. S., Dent, D. L. and Morris, E. M.. 1974. Subglacial shearing and crushing, and the role of water pressures in tills from south-east Iceland. Geogr. Ann., 56A(3–4), 135145.
Clarke, G. K. C. 1987. Subglacial till: a physical framework for its properties and processes. J. Geophys. Res., 92(B9), 90239036.
Fischer, U. H. and Clarke, G. K. C.. 1994. Ploughing of subglacial sediment. J. Glaciol., 40(134), 97106.
Fischer, U. H. and Clarke, G. K. C.. 1997. Stick-slip sliding behaviour at the base of a glacier. Ann. Glaciol., 24, 390396.
Fischer, U. H. and Clarke, G. K. C.. In press. A review of subglacial hydro mechanical coupling: Trapridge Glacier, Canada. Quat. Int.
Fischer, U. H., Iverson, N. R., Hanson, B., Hooke, R. LeB. and Jansson, P.. 1998. Estimation of hydraulic properties of subglacial till from ploughmeter measurements. J. Glaciol., 44(148), 517522.
Gordon, S., Sharp, M., Hubbard, B., Smart, C., Ketterling, B. and Willis, I.. 1998. Seasonal reorganization of subglacial drainage inferred from measurements in boreholes. Hydrol. Processes, 12, 105133.
Harbor, J., Sharp, M., Copland, L., Hubbard, B., Nienow, P. and Mair, D.. 1997. The influence of subglacial drainage conditions on the velocity distribution within a glacier cross section. Geology, 25(8), 739742.
Harrison, W. D., Echelmeyer, K. A. and Engelhardt, H.. 1993. Short-period observations of speed, strain and seismicity on Ice Stream B, Antarctica. J. Glaciol., 39(133), 463470.
Hock, R. 1993. Comparison of ventilated and unventilated air temperature measurements. In Tarfala Research Station annual report 1992–93. Stockholm, Stockholms Universitet. Naturgeografiska Institutionen, 1619. (Forsknings- rapport 100.)
Hooke, R. LeB., Hanson, B., Iverson, N. R., Jansson, P. and Fischer, U. H.. 1997. Rheology of till beneath Storglaciären, Sweden. J. Glaciol., 43(143), 172179.
Hubbard, B. P., Sharp, M. J., Willis, I. C., Nielsen, M. K. and Smart, C. C.. 1995. Borehole water-level variations and the structure of the subglacial hydrological system of Haut Glacier d’Arolla, Valais, Switzerland. J. Glaciol., 41(139), 572583.
Iken, A. and Bindschadler, R. A.. 1986. Combined measurements of subglacial water pressure and surface velocity of Findelengletscher, Switzerland: conclusions about drainage system and sliding mechanism. J. Glaciol., 32(110), 101119.
Iken, A., Röthlisberger, H., Flotron, A. and Haeberli, W.. 1983. The uplift of Unteraargletscher at the beginning of the melt season — a consequence of water storage at thebed? J. Glaciol., 29(101), 2847.
Iverson, N. R. 1999. Coupling between a glacier and a soft bed. II. Model results. J. Glaciol., 45(149), 4153.
Iverson, N. R., Jansson, P. and Hooke, R. LeB.. 1994. In-situ measurement of the strength of deforming subglacial till. J. Glaciol., 40(136), 497503.
Iverson, N. R., Baker, R. W. and Hooyer, T. S.. 1997. A ring-shear device for the study of till deformation: tests on tills with contrasting clay contents. Quat. Sci. Rev., 16(9), 10571066.
Iverson, N. R., Hooyer, T. S. and Baker, R. W.. 1998. Ring-shear studies of till deformation: Coulomb-plastic behavior and distributed strain in glacier beds. J. Glaciol., 44(148), 634642.
Iverson, N. R., Baker, R. W., Hooke, R. LeB., Hanson, B. and Jansson, P.. 1999. Coupling between a glacier and a soft bed. I. A relation between effective pressure and local shear stress determined from till elasticity. J. Glaciol., 45(149), 3140.
Jansson, P. 1995. Water pressure and basal sliding on Storglaciären, northern Sweden. J. Glaciol., 41 (138), 232240.
Kamb, B. and Engelhardt, H.. 1987. Waves of accelerated motion in a glacier approaching surge: the mini-surges of Variegated Glacier, Alaska, U.S.A. J. Glaciol., 33(113), 2746.
Kavanaugh, J. L. 2000. Hydromechanical behaviour of a surge-type glacier: Trapridge Glacier, YukonTerritory, Canada. (Ph.D. thesis, Universityof British Columbia.)
Kavanaugh, J. L. and Clarke, G. K. C.. 2000. Evidence for extreme pressure pulses in the subglacial water system. J. Glaciol., 46(153), 206212.
Murray, T. and Clarke, G. K. C.. 1995. Black-box modeling of the subglacial water system. J. Geophys. Res., 100(B7), 10,23110,245.
Röthlisberger, H. and Lang, H.. 1987. Glacial hydrology. In Gurnell, A.M. and Clark, M.J., eds. Glacio-fluvial sediment transfer: an alpine perspective. Chichester, etc., John Wiley and Sons, 207284.
Stone, D. B. 1993. Characterization of the basal hydraulic system of a surge-type glacier: Trapridge Glacier, 1989–92. (Ph.D. thesis, University of British Columbia.)
Stone, D. B. and Clarke, G. K. C.. 1996. In situ measurements of basal water quality and pressure as an indicator of the character of subglacial drainage systems. Hydrol. Processes, 10(4), 615628.
Stone, D. B., Clarke, G. K. C. and Blake, E. W.. 1993. Subglacial measurement of turbidity and electrical conductivity. J. Glaciol., 39(132), 415420.
Truffer, M., Harrison, W. D. and Echelmeyer, K. A.. 2000. Glacier motion dominated by processes deep in underlying till. J. Glaciol., 46(153), 213221.
Tulaczyk, S. M., Kamb, B. and Engelhardt, H. F.. 2000. Basal mechanics of Ice Stream B, West Antarctica. I. Till mechanics. J. Geophys. Res., 105(B1), 463481.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed