Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T05:10:10.430Z Has data issue: false hasContentIssue false

Weakly nonlinear transient waves on a shear current: ring waves and skewed Langmuir rolls

Published online by Cambridge University Press:  29 January 2019

Andreas H. Akselsen*
Affiliation:
Department of Energy and Process Engineering, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
Simen Å. Ellingsen
Affiliation:
Department of Energy and Process Engineering, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
*
Email address for correspondence: andreas.h.akselsen@ntnu.no

Abstract

We investigate the weakly nonlinear dynamics of transient gravity waves at infinite depth under the influence of a shear current varying linearly with depth. The shear field makes this problem three-dimensional and rotational in nature, but an analytical solution is permitted via integration of the Euler equations. Although similar problems were investigated in the 1960s and 70s for special cases of resonance, this is to our knowledge the first general wave interaction (mode coupling) solution derived to second order with a shear current present. Wave interactions are integrable in a spectral convolution to yield the second-order dynamics of initial value problems. To second order, irrotational wave dynamics interacts with the background vorticity field in a way that creates new vortex structures. A notable example is the large parallel vortices which drive Langmuir circulation as oblique plane waves interact with an ocean current. We also investigate the effect on wave pairs which are misaligned with the shear current to find that similar, but skewed, vortex structures are generated in every case except when the mean wave direction is precisely perpendicular to the direction of the current. This is in contrast to a conjecture by Leibovich (Annu. Rev. Fluid Mech., vol. 15, 1983, pp. 391–427). Similar nonlinear wave–shear interactions are found to also generate near-field vortex structures in the Cauchy–Poisson problem with an initial surface elevation. These interactions create further groups of dispersive ring waves in addition to those present in linear theory. The second-order solution is derived in a general manner which accommodates any initial condition through mode coupling over a continuous wave spectrum. It is therefore applicable to a range of problems including special cases of resonance. As a by-product of the general theory, a simple expression for the Stokes drift due to a monochromatic wave propagating at oblique angle with a current of uniform vorticity is derived, for the first time to our knowledge.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abou-Dina, M. S. 2001 Nonlinear transient gravity waves due to an initial free-surface elavation over a topography. J. Comput. Appl. Maths 130 (1–2), 173195.10.1016/S0377-0427(99)00384-2Google Scholar
Abramowitz, M. & Stegun, I. 1964 Handbook of Mathematical Functions, Applied Mathematics Series. National Bureau of Standards.Google Scholar
Antar, B. N. & Collins, F. G. 1975 Numerical calculation of finite amplitude effects in unstable laminar boundary layers. Phys. Fluids 18 (3), 289297.10.1063/1.861135Google Scholar
Belcher, S. E., Grant, A. L., Hanley, K. E., Fox-Kemper, B., Van Roekel, L., Sullivan, P. P., Large, W. G., Brown, A., Hines, A. C., Daley et al. 2012 A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophys. Res. Lett. 39 (18), doi:10.1029/2012GL052932.Google Scholar
Benney, D. J. 1962 Non-linear gravity wave interactions. J. Fluid Mech. 14 (4), 577584.10.1017/S0022112062001469Google Scholar
Benney, D. J. 1964 Finite amplitude effects in an unstable laminar boundary layer. Phys. Fluids 7 (3), 319326.10.1063/1.1711201Google Scholar
Benney, D. J. & Lin, C. C. 1960 On the secondary motion induced by oscillations in a shear flow. Phys. Fluids 3 (4), 656657.10.1063/1.1706101Google Scholar
Benney, D. J. 1961 A non-linear theory for oscillations in a parallel flow. J. Fluid Mech. 10 (2), 209236.10.1017/S0022112061000196Google Scholar
Carpenter, J. R., Tedford, E. W., Heifetz, E. & Lawrence, G. A. 2011 Instability in stratified shear flow: review of a physical interpretation based on interacting waves. Appl. Mech. Rev. 64 (6), 060801.Google Scholar
Cauchy, A. L.1816 Théorie de la propagation des ondes à la surface d’un fluide pesant d’une profondeur indéfinie, mém. div.Google Scholar
Constantin, A. & Strauss, W. 2010 Pressure beneath a stokes wave. Commun. Pure Appl. Maths 63 (4), 533557.Google Scholar
Craik, A. D. D. 1970 A wave-interaction model for the generation of windows. J. Fluid Mech. 41 (4), 801821.10.1017/S0022112070000939Google Scholar
Craik, A. D. D. & Leibovich, S. 1976 A rational model for Langmuir circulations. J. Fluid Mech. 73 (3), 401426.10.1017/S0022112076001420Google Scholar
Craik, A. D. D. 1968 Resonant gravity–wave interactions in a shear flow. J. Fluid Mech. 34 (3), 531549.10.1017/S0022112068002065Google Scholar
Craik, A. D. D. 1971 Non-linear resonant instability in boundary layers. J. Fluid Mech. 50 (2), 393413.10.1017/S0022112071002635Google Scholar
Craik, A. D. D. 1986 Wave Interactions and Fluid Flows. Cambridge University Press.10.1017/CBO9780511569548Google Scholar
Crawford, D. R., Lake, B. M., Saffman, P. G. & Yuen, H. C. 1981 Stability of weakly nonlinear deep-water waves in two and three dimensions. J. Fluid Mech. 105, 177191.10.1017/S0022112081003169Google Scholar
D’Asaro, E. A., Thomson, J., Shcherbina, A. Y., Harcourt, R. R., Cronin, M. F., Hemer, M. A. & Fox-Kemper, B. 2014 Quantifying upper ocean turbulence driven by surface waves. Geophys. Res. Lett. 41 (1), 102107.10.1002/2013GL058193Google Scholar
Dommermuth, D. G. & Yue, D. K. P. 1987 A high-order spectral method for the study of nonlinear gravity waves. J. Fluid Mech. 184, 267288.10.1017/S002211208700288XGoogle Scholar
Dong, Z. & Kirby, J. T. 2012 Theoretical and numerical study of wave–current interaction in strongly-sheared flows. Coast. Engng Proc. 1 (33), doi:10.9753/icce.v33.waves.2.Google Scholar
Drazin, P. G. & Reid, W. H. 2004 Hydrodynamic Stability, 2nd edn. Cambridge University Press.10.1017/CBO9780511616938Google Scholar
Drivas, T. D. & Wunsch, S. 2016 Triad resonance between gravity and vorticity waves in vertical shear. Ocean Model. 103, 8797.10.1016/j.ocemod.2015.10.002Google Scholar
Ellingsen, S. Å. 2014a Initial surface disturbance on a shear current: the Cauchy–Poisson problem with a twist. Phys. Fluids 26 (8), doi:10.1063/1.4891640.Google Scholar
Ellingsen, S. Å. 2014b Ship waves in the presence of uniform vorticity. J. Fluid Mech. 742, R2, doi:10.1017/jfm.2014.28.Google Scholar
Ellingsen, S. Å. 2016 Oblique waves on a vertically sheared current are rotational. Eur. J. Mech. (B/Fluids) 56, 156160.10.1016/j.euromechflu.2015.11.002Google Scholar
Faller, A. J. & Caponi, E. A. 1978 Laboratory studies of wind-driven Langmuir circulations. J. Geophys. Res. 83 (C7), 36173633.10.1029/JC083iC07p03617Google Scholar
Fenton, J. D. 1985 Fifth-order Stokes theory for steady waves. J. Waterways Port Coast. Ocean Engng 111 (2), 216234.10.1061/(ASCE)0733-950X(1985)111:2(216)Google Scholar
Francius, M. & Kharif, C. 2017 Two-dimensional stability of finite-amplitude gravity waves on water of finite depth with constant vorticity. J. Fluid Mech. 830, 631659.10.1017/jfm.2017.603Google Scholar
Hasselmann, K. 1962 On the non-linear energy transfer in a gravity–wave spectrum. Part 1. General theory. J. Fluid Mech. 12 (4), 481500.10.1017/S0022112062000373Google Scholar
Hasselmann, K. 1963 On the non-linear energy transfer in a gravity wave spectrum. Part 2. Conservation theorems; wave-particle analogy; irrevesibility. J. Fluid Mech. 15 (2), 273281.10.1017/S0022112063000239Google Scholar
Holliday, D. 1977 On nonlinear interactions in a spectrum of inviscid gravity-capillary surface waves. J. Fluid Mech. 83 (4), 737749.10.1017/S0022112077001438Google Scholar
Hsu, H.-C. 2013 Particle trajectories for waves on a linear shear current. Nonlinear Anal. Real World Appl. 14 (5), 20132021.10.1016/j.nonrwa.2013.02.005Google Scholar
Hsu, H.-C., Francius, M., Montalvo, P. & Kharif, C. 2016 Gravity-capillary waves in finite depth on flows of constant vorticity. Proc. R. Soc. Lond. A 472 (2195), 20160363.10.1098/rspa.2016.0363Google Scholar
Johnson, R. S. 1990 Ring waves on the surface of shear flows: a linear and nonlinear theory. J. Fluid Mech. 215, 145160.10.1017/S0022112090002592Google Scholar
Kadomtsev, B. B. & Karpman, V. I. 1971 Nonlinear waves. Sov. Phys. Uspekhi 14 (1), 40.10.1070/PU1971v014n01ABEH004441Google Scholar
Kharif, C. & Pelinovsky, E. 2003 Physical mechanisms of the rogue wave phenomenon. Eur. J. Mech. (B/Fluids) 22 (6), 603634.10.1016/j.euromechflu.2003.09.002Google Scholar
Khusnutdinova, K. R. & Zhang, X. 2016a Long ring waves in a stratified fluid over a shear flow. J. Fluid Mech. 794, 1744.10.1017/jfm.2016.147Google Scholar
Khusnutdinova, K. R. & Zhang, X. 2016b Nonlinear ring waves in a two-layer fluid. Physica D 333, 208221.Google Scholar
Kishida, N. & Sobey, R. J. 1988 Stokes theory for waves on linear shear current. J. Engng Mech. 114 (8), 13171334.10.1061/(ASCE)0733-9399(1988)114:8(1317)Google Scholar
Leibovich, S. 1983 The form and dynamics of Langmuir circulations. Annu. Rev. Fluid Mech. 15, 391427.10.1146/annurev.fl.15.010183.002135Google Scholar
Li, Q., Fox-Kemper, B., Breivik, Ø. & Webb, A. 2017 Statistical models of global Langmuir mixing. Ocean Model. 113, 95114.10.1016/j.ocemod.2017.03.016Google Scholar
Lin, C. C. 1955 The Theory of Hydrodynamic Stability. Cambridge University Press.Google Scholar
Longuet-Higgins, M. S. & Phillips, O. M. 1962a Phase velocity effects in tertiary wave interactions. J. Fluid Mech. 12 (3), 333336.10.1017/S0022112062000245Google Scholar
Longuet-Higgins, M. S. & Phillips, O. M. 1962b Phase velocity effects in tertiary wave interactions. J. Fluid Mech. 12 (3), 333336.10.1017/S0022112062000245Google Scholar
McWilliams, J. C., Huckle, E., Liang, J. & Sullivan, P. P. 2014 Langmuir turbulence in swell. J. Phys. Oceanogr. 44 (3), 870890.10.1175/JPO-D-13-0122.1Google Scholar
Peregrine, D. H. 1976 Interaction of water waves and currents. Adv. Appl. Mech. 16, 9117.10.1016/S0065-2156(08)70087-5Google Scholar
Phillips, O. M. 1960 On the dynamics of unsteady gravity waves of finite amplitude. Part 1. The elementary interactions. J. Fluid Mech. 9 (2), 193217.10.1017/S0022112060001043Google Scholar
Poisson, S.-D. 1818 M {é} moire sur la th {é} orie des ondes. M {é} m. Acad. R. Sci. Inst. France 2, 70186.Google Scholar
Rainey, R. C. T. 2018 The behaviour of short waves in the presence of large long waves. In Proceedings 33rd International Workshop on Water Waves and Floating Bodies, Guidel-Plages, France.Google Scholar
Shrira, V. I. 1993 Surface waves on shear currents: solution of the boundary-value problem. J. Fluid Mech. 252, 565584.10.1017/S002211209300388XGoogle Scholar
Stewartson, K. & Stuart, J. T. 1971 A non-linear instability theory for a wave system in plane poiseuille flow. J. Fluid Mech. 48 (3), 529545.10.1017/S0022112071001733Google Scholar
Thomas, R., Kharif, C. & Manna, M. 2012 A nonlinear Schrodinger equation for water waves on finite depth with constant vorticity. Phys. Fluids 24 (12), 127102.10.1063/1.4768530Google Scholar
Umeyama, M., Shintani, T. & Watanabe, S. 2011 Measurements of particle velocities and trajectories in a wave–current motion using particle image velocimetry. Coast. Engng Proc. 1 (32), 2.10.9753/icce.v32.waves.2Google Scholar
Van Roekel, L. P., Fox-Kemper, B., Sullivan, P. P., Hamlington, P. E. & Haney, S. R. 2012 The form and orientation of Langmuir cells for misaligned winds and waves. J. Geophys. Res. 117 (C5), doi:10.1029/2011JC007516.Google Scholar
Watson, K. M. & West, B. J. 1975 A transport-equation description of nonlinear ocean surface wave interactions. J. Fluid Mech. 70 (4), 815826.10.1017/S0022112075002364Google Scholar
Wehausen, J. W. & Laitone, E. V. 1960 Surface waves. In Fluid Dynamics III (ed. Flügge, S.), Encyclopedia of Physics, vol. IX, pp. 446778. Springer.Google Scholar
West, B. J. 1981 On the Simpler Aspects of Nonlinear Fluctuating Deep Water Gravity Waves: Weak Interaction Theory. Springer.Google Scholar
Whitham, G. B. 1974 Linear and Nonlinear Waves. Wiley.Google Scholar
Wong, R. 2001 Asymptotic Approximations of Integrals. SIAM.10.1137/1.9780898719260Google Scholar
Zakharov, V. E. & Shrira, V. I. 1990 About the formation of angular spectrum of wind waves. Zh. Eksp. Teor. Fiz. 98, 19411958.Google Scholar
Zakharov, V. E. 1968 Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9 (2), 190194.10.1007/BF00913182Google Scholar

Akselsen and Ellingsen supplementary movie 1

Slowly developing skewed Langmuir–like vortical structures due to a wave pair propagating, on average, at 45 degree relative to the shear current. Initial evolution; vortex development disturbed by periodic second order wave motion.

Download Akselsen and Ellingsen supplementary movie 1(Video)
Video 9.5 MB

Akselsen and Ellingsen supplementary movie 2

Slowly developing skewed Langmuir–like vortical structures due to a wave pair propagating, on average, at 45 degree relative to the shear current. Long term vortex evolution.

Download Akselsen and Ellingsen supplementary movie 2(Video)
Video 7 MB

Akselsen and Ellingsen supplementary movie 3

Cauchy problem – Gaussian initial elevation profile. Blue, dashed/open: first order solution; Black, solid/filled: second order solution. Fr S = 0.

Download Akselsen and Ellingsen supplementary movie 3(Video)
Video 1.5 MB

Akselsen and Ellingsen supplementary movie 4

Cauchy problem – Gaussian initial elevation profile. Blue, dashed/open: first order solution; Black, solid/filled: second order solution. Fr S = 0.5.

Download Akselsen and Ellingsen supplementary movie 4(Video)
Video 1.6 MB