Skip to main content Accessibility help
×
Home

Wavelet-based adaptive unsteady Reynolds-averaged turbulence modelling of external flows

  • Giuliano De Stefano (a1), Oleg V. Vasilyev (a2) (a3) (a4) and Eric Brown-Dymkoski (a4)

Abstract

The recent development of the adaptive-anisotropic wavelet-collocation method, which incorporates the use of coordinate transforms, opens new horizons for wavelet-based simulations of wall-bounded turbulent flows. The new wavelet-based adaptive unsteady Reynolds-averaged Navier–Stokes approach for computational modelling of turbulent flows is presented. The proposed methodology that is integrated with anisotropic wavelet-based mesh refinement is demonstrated for a two-equation eddy-viscosity turbulence model. The performance of the method is assessed by conducting numerical simulations of the turbulent flow past a circular cylinder at subcritical Reynolds number. The present study demonstrates both the feasibility and the effectiveness of the new wavelet-based adaptive unsteady Reynolds-averaged turbulence modelling procedure for external flows.

Copyright

Corresponding author

References

Hide All
Angot, P., Bruneau, C.-H. & Fabrie, P. 1999 A penalization method to take into account obstacles in incompressible viscous flows. Numer. Math. 81, 497520.
Beaudan, P. & Moin, P.1994 Numerical experiments on the flow past a circular cylinder at sub-critical Reynolds number. Tech. Rep. TF-62. Mechanical Engineering Department, Stanford University.
Brown-Dymkoski, E., Kasimov, N. & Vasilyev, O. V. 2014 A characteristic based volume penalization method for general evolution problems applied to compressible viscous flows. J. Comput. Phys. 262, 344357.
Brown-Dymkoski, E. & Vasilyev, O. V. 2017 Adaptive-anisotropic wavelet collocation method on general curvilinear coordinate systems. J. Comput. Phys. 333, 414426.
De Stefano, G., Goldstein, D. E. & Vasilyev, O. V. 2005 On the role of subgrid-scale coherent modes in large-eddy simulation. J. Fluid Mech. 525, 263274.
De Stefano, G., Nejadmalayeri, A. & Vasilyev, O. V. 2016 Wall-resolved wavelet-based adaptive large-eddy simulation of bluff-body flows with variable thresholding. J. Fluid Mech. 788, 303336.
De Stefano, G. & Vasilyev, O. V. 2012 A fully adaptive wavelet-based approach to homogeneous turbulence simulation. J. Fluid Mech. 695, 149172.
De Stefano, G. & Vasilyev, O. V. 2014 Wavelet-based adaptive simulations of three-dimensional flow past a square cylinder. J. Fluid Mech. 748, 433456.
Farge, M., Schneider, K. & Kevlahan, N. 1999 Non-Gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthogonal wavelet basis. Phys. Fluids 11 (8), 21872201.
Freund, J. B. 1997 Proposed inflow/outflow boundary condition for direct computation of aerodynamic sound. AIAA J. 35 (4), 740742.
Fröhlich, J. & von Terzi, D. A. 2008 Hybrid LES/RANS methods for the simulation of turbulent flows. Prog. Aerosp. Sci. 44 (5), 349377.
Goldstein, D. E. & Vasilyev, O. V. 2004 Stochastic coherent adaptive large eddy simulation method. Phys. Fluids 16 (7), 24972513.
Kevlahan, N. K.-R. & Vasilyev, O. V. 2005 An adaptive wavelet collocation method for fluid–structure interaction at high Reynolds numbers. SIAM J. Sci. Comput. 26 (6), 18941915.
Kok, J. C. 2000 Resolving the dependence on freestream values for the k–𝜔 turbulence model. AIAA J. 38 (7), 12921295.
Kolmogorov, A. N. 1942 Equations of turbulent motions of an incompressible fluid. Izv. Akad. Nauk SSR Ser. Phys. 6 (1), 5658.
Kravchenko, A. G. & Moin, P. 2000 Numerical studies of flow over a circular cylinder at Re = 3900. Phys. Fluids 12 (2), 403417.
Menter, F. R. & Egorov, Y. 2010 The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1. Theory and model description. Flow Turbul. Combust. 85, 113138.
Mittal, R. & Balachandar, S. 1995 Effect of three-dimensionality on the lift and drag of nominally two-dimensional cylinders. Phys. Fluids 7, 18411865.
Nejadmalayeri, A., Vezolainen, A., Brown-Dymkoski, E. & Vasilyev, O. V. 2015 Parallel adaptive wavelet collocation method for PDEs. J. Comput. Phys. 298, 237253.
Nejadmalayeri, A., Vezolainen, A., De Stefano, G. & Vasilyev, O. V. 2014 Fully adaptive turbulence simulations based on Lagrangian spatio-temporally varying wavelet thresholding. J. Fluid Mech. 749, 794817.
Norberg, C. 1994 An experimental investigation of the flow around a circular cylinder: influence of aspect ratio. J. Fluid Mech. 258, 287316.
Ong, L. & Wallace, J. 1996 The velocity field of the turbulent very near wake of a circular cylinder. Exp. Fluids 20, 441453.
Palkin, E., Mullyadzhanov, R. & Hanjalić, K. 2014 URANS and LES of a flow over a cylinder at Re = 3900. In Proceedings of 17th International Conference on the Methods of Aerophysical Research, June 30–July 6, 2014, Novosibirsk, pp. 18.
Palkin, E., Mullyadzhanov, R., Hadziabdić, M. & Hanjalić, K. 2016 Scrutinizing URANS in shedding flows: the case of cylinder in cross-flow in the subcritical regime. Flow Turbul. Combust. 97, 10171046.
Reina, G. P. & De Stefano, G. 2017 Computational evaluation of wind loads on sun-tracking ground-mounted photovoltaic panel arrays. J. Wind Engng Ind. Aerodyn. 170, 283293.
Saffman, P. G. 1970 A model for inhomogeneous turbulent flow. Proc. R. Soc. Lond. A 317 (1530), 417433.
Schneider, K. & Vasilyev, O. V. 2010 Wavelet methods in computational fluid dynamics. Annu. Rev. Fluid Mech. 42, 473503.
Spalart, P. R. & Rumsey, C. L. 2007 Effective inflow conditions for turbulence models in aerodynamic calculations. AIAA J. 45 (10), 25442553.
Travin, A., Shur, M., Strelets, M. & Spalart, P. 1999 Detached-eddy simulations past a circular cylinder. Flow Turbul. Combust. 63, 293313.
Vasilyev, O. V. 2003 Solving multi-dimensional evolution problems with localized structures using second generation wavelets. Intl J. Comput. Fluid Dyn. 17 (2), 151168 (special issue on High-Resolution methods in Computational Fluid Dynamics).
Vasilyev, O. V. & Bowman, C. 2000 Second generation wavelet collocation method for the solution of partial differential equations. J. Comput. Phys. 165, 660693.
Vasilyev, O. V. & Kevlahan, N. K.-R. 2002 Hybrid wavelet collocation: Brinkman penalization method for complex geometry flows. Intl J. Numer. Meth. Fluids 40, 531538.
Wilcox, D. C. 1988 Reassessment of the scale determining equation for advanced turbulence models. AIAA J. 26 (11), 12991310.
Wilcox, D. C.1993 A two-equation turbulence model for wall-bounded and free-shear flows. AIAA Paper 1993-2905.
Wilcox, D. C. 2008 Formulation of the k–𝜔 turbulence model revisited. AIAA J. 46 (11), 28232838.
Williamson, C. H. K. 1996 Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28, 477539.
Young, M. E. & Ooi, A. 2007 Comparative assessment of LES and URANS for flow over a cylinder at a Reynolds number of 3900. In 16th Australasian Fluid Mechanics Conference, pp. 10631070.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO

Wavelet-based adaptive unsteady Reynolds-averaged turbulence modelling of external flows

  • Giuliano De Stefano (a1), Oleg V. Vasilyev (a2) (a3) (a4) and Eric Brown-Dymkoski (a4)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.