Skip to main content Accessibility help
×
Home

Water drops bouncing off vertically vibrating textured surfaces

  • Wei Wang (a1), Chen Ji (a1) (a2), Fangye Lin (a1), Jun Zou (a1) and S. Dorbolo (a3)...

Abstract

We investigate the conditions that determine the detachment of a water drop from different vibrating textured plates by using vertical vibrations. The plate surfaces were patterned by a lattice of pillars of different shapes with different geometrical arrangements. The acceleration threshold for the water droplet to bounce off the surfaces was measured as a function of the excitation frequency. In each case, the acceleration threshold presents a minimum at the natural frequency of the droplet. The minimum acceleration required for the take-off is larger for small droplets than for large droplets. Namely, one finds that the value of the threshold depends on the size of the droplet and on the maximum apparent contact area between the droplet and the substrate. The theoretical model takes into account the energy necessary to break the capillary bridges between the droplet and the pillars of the surface. This model captures the main ingredients explaining the drop size dependence of the acceleration threshold for the take-off.

Copyright

Corresponding author

Email address for correspondence: junzou@zju.edu.cn

References

Hide All
Bartolo, D., Josserand, C. & Bonn, D. 2005 Retraction dynamics of aqueous drops upon impact on non-wetting surfaces. J. Fluid Mech. 545, 329338.
Boreyko, J. B. & Chen, C. H. 2009 Restoring superhydrophobicity of lotus leaves with vibration-induced dewetting. Phys. Rev. Lett. 103 (17), 174502.
Brunet, P., Eggers, J. & Deegan, R. D. 2007 Vibration-induced climbing of drops. Phys. Rev. Lett. 99 (14), 144501.
Butt, H. J., Gao, N., Papadopoulos, P., Steffen, W., Kappl, M. & Berger, R. 2017 Energy dissipation of moving drops on superhydrophobic and superoleophobic surfaces. Langmuir 33 (1), 107116.
Cassie, A. B. D. & Baxter, S. 1944 Wettability of porous surfaces. Trans. Faraday Soc. 40 (0), 546551.
Clanet, C., Béguin, C., Richard, D. & Quéré, D. 2004 Maximal deformation of an impacting drop. J. Fluid Mech. 517, 199208.
Couder, Y., Fort, E., Gautier, C. H. & Boudaoud, A. 2005 From bouncing to floating: noncoalescence of drops on a fluid bath. Phys. Rev. Lett. 94 (17), 177801.
Daniel, S., Chaudhury, M. K. & De Gennes, P. G. 2005 Vibration-actuated drop motion on surfaces for batch microfluidic processes. Langmuir 21 (9), 42404248.
de Gennes, P. G., Brochard-Wyart, F. & Quéré, D. 2008 Capillary and Wetting Phenomena. Springer.
Gilet, T., Terwagne, D., Vandewalle, N. & Dorbolo, S. 2008 Dynamics of a bouncing droplet onto a vertically vibrated interface. Phys. Rev. Lett. 100 (16), 167802.
Hubert, M., Robert, D., Caps, H., Dorbolo, S. & Vandewalle, N. 2015 Resonant and antiresonant bouncing droplets. Phys. Rev. E 91 (2), 023017.
Khojasteh, D., Kazerooni, M., Salarian, S. & Kamali, R. 2016 Droplet impact on superhydrophobic surfaces: a review of recent developments. J. Indust. Engng Chem. 42, 114.
Kim, H. & Hee-Chang, L. 2015 Mode pattern of internal flow in a water droplet on a vibrating hydrophobic surface. J. Phys. Chem. B 119 (22), 67406746.
Mao, T., Kuhn, D. CS. & Tran, H. 1997 Spread and rebound of liquid droplets upon impact on flat surfaces. AIChE J. 43 (9), 21692179.
McBride, S. A., Dash, S. & Varanasi, K. K. 2018 Evaporative crystallization in drops on superhydrophobic and liquid-impregnated surfaces. Langmuir 34 (41), 1235012358.
Noblin, X., Buguin, A. & Brochard-Wyart, F. 2004 Vibrated sessile drops: transition between pinned and mobile contact line oscillations. Eur. Phys. J. E 14 (4), 395404.
Olin, P., Lindstrom, S. B., Pettersson, T. & Wagberg, L. 2013 Water drop friction on superhydrophobic surfaces. Langmuir 29 (29), 90799089.
Quéré, D. & Reyssat, M. 2008 Non-adhesive lotus and other hydrophobic materials. Phil. Trans. R. Soc. Lond. A 366 (1870), 15391556.
Raufaste, C., Chagas, G. R., Darmanin, T., Claudet, C., Guittard, F. & Celestini, F. 2017 Superpropulsion of droplets and soft elastic solids. Phys. Rev. Lett. 119 (10), 108001.
Rayleigh, Lord 1879 VI. On the capillary phenomena of jets. Proc. R. Soc. Lond. A 29 (196–199), 7197.
Richard, D., Clanet, C. & Quéré, D. 2002 Surface phenomena: contact time of a bouncing drop. Nature 417 (6891), 811.
Richard, D. & Quéré, D. 2000 Bouncing water drops. Europhys. Lett. 50 (6), 769.
de Ruiter, J., Lagraauw, R., van den Ende, D. & Mugele, F. 2014 Wettability-independent bouncing on flat surfaces mediated by thin air films. Nat. Phys. 11 (1), 4853.
de Ruiter, J., Lagraauw, R., Mugele, F. & van den Ende, D. 2015 Bouncing on thin air: how squeeze forces in the air film during non-wetting droplet bouncing lead to momentum transfer and dissipation. J. Fluid Mech. 776, 531567.
Sharp, J. S. 2012 Resonant properties of sessile droplets; contact angle dependence of the resonant frequency and width in glycerol/water mixtures. Soft Matt. 8 (2), 399407.
Sharp, J. S., Farmer, D. J. & Kelly, J. 2011 Contact angle dependence of the resonant frequency of sessile water droplets. Langmuir 27 (15), 93679371.
Smith, J. D., Dhiman, R., Anand, S., Reza-Garduno, E., Cohen, R. E., McKinley, G. H. & Varanasi, K. K. 2013 Droplet mobility on lubricant-impregnated surfaces. Soft Matt. 9 (6), 17721780.
Wei, L., Zhihai, J., H., J., C., T. & Gang, W. 2014 Vibration-induced Wenzel–Cassie wetting transition on microstructured hydrophobic surfaces. Appl. Phys. Lett. 104 (18), 181601.
Zawala, J., Dorbolo, S., Terwagne, D., Vandewalle, N. & Malysa, K. 2011 Bouncing bubble on a liquid/gas interface resting or vibrating. Soft Matt. 7 (14), 67196726.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed