Skip to main content Accessibility help
×
Home

Water droplet condensation and evaporation in turbulent channel flow

  • E. Russo (a1), J. G. M. Kuerten (a1) (a2), C. W. M. van der Geld (a1) and B. J. Geurts (a2) (a3)

Abstract

We propose a point-particle model for two-way coupling of water droplets dispersed in the turbulent flow of a carrier gas consisting of air and water vapour. We adopt an Euler–Lagrangian formulation based on conservation laws for the mass, momentum and energy of the continuous phase and on empirical correlations describing momentum, heat and mass transfer between the droplet phase and the carrier gas phase. An incompressible flow formulation is applied for direct numerical simulation of differentially heated turbulent channel flow. The two-way coupling is investigated in terms of its effects on mass and heat transfer characteristics and the resulting droplet size distribution. Compared to simulations without droplets or those with solid particles with the same size and specific heat as the water droplets, a significant increase in Nusselt number is found, arising from the additional phase changes. The Nusselt number increases with increasing ambient temperature and is almost independent of the heat flux applied to the walls of the channel. The time-averaged droplet size distribution displays a characteristic dependence on position expressing the combined effect of turbophoresis and phase changes in turbulent wall-bounded flow. In the statistically steady state that is reached after a long time, the resulting flow exhibits a mean motion of water vapour from the warm wall to the cold wall, where it condenses on average, followed by a net mean mass transfer of droplets from the cold wall to the warm wall.

Copyright

Corresponding author

Email address for correspondence: e.russo@tue.nl

References

Hide All
Antoine, C. 1888 Tension des vapeurs: nouvelle relation entre les tension et les temperatures. Comptes Rendus 107, 681684; 778–780; 836–837.
Armenio, V. & Fiorotto, V. 2001 The importance of the forces acting on particles in turbulent flows. Phys. Fluids 13, 24372440.
Balachandar, S. & Eaton, J. K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.
Bec, J., Biferale, L., Lanotte, A. S., Scagliarini, A. & Toschi, F. 2010 Turbulent pair dispersion of inertial particles. J. Fluid Mech. 645, 497528.
Bird, R. B., Stewart, W. E. & Lightfoot, E. N. 1960 Transport Phenomena. John Wiley & Sons.
Clift, R., Grace, J. R. & Weber, M. E. 1978 Bubbles, Drops, and Particles. Academic Press.
Crowe, C. T., Schwarzkopf, J. D., Sommerfeld, M. & Tsuji, Y. 2011 Multiphase Flow with Droplets and Particles. CRC Press.
Eaton, J. K. 2009 Two-way coupled turbulence simulations of gas–particle flows using point-particle tracking. Intl J. Multiphase Flow 35 (9), 792800.
Elghobashi, S. 1991 Particle-laden turbulent flows: direct simulation and closure models. Appl. Sci. Res. 48, 301314.
Elghobashi, S. 1994 On predicting particle-laden turbulent flows. Appl. Sci. Res. 52, 309329.
Esmaeeli, A. & Tryggvason, G. 1998 Direct numerical simulations of bubbly flows. Part I. Low-Reynolds-number arrays. J. Fluid Mech. 377, 313345.
Esmaeeli, A. & Tryggvason, G. 1999 Direct numerical simulations of bubbly flows. Part II. Moderate-Reynolds-number arrays. J. Fluid Mech. 385, 325358.
Ferrante, A. & Elghobashi, S. 2003 On the physical mechanisms of two-way coupling in particle-laden isotropic turbulence. Phys. Fluids 15, 315329.
Hinze, J. O. 1956 Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J. 1 (3), 289295.
Kuerten, J. G. M. 2006 Subgrid modeling in particle-laden channel flow. Phys. Fluids 18, 025108.
Kuerten, J. G. M., van der Geld, C. W. M. & Geurts, B. J. 2011 Turbulence modification and heat trasfer enhancement by inertial particles in turbulent channel flow. Phys. Fluids 23, 123301.
Lenert, A., Nam, Y., Yilbas, B. S. & Wang, E. N. 2013 Focusing of phase change microparticles for local heat transfer enhancement in laminar flows. Intl J. Heat Mass Transfer 56 (1–2), 380389.
Marchioli, C., Soldati, A., Kuerten, J. G. M., Arcen, B., Tanière, A., Goldensoph, G., Squires, K. D., Cargnelutti, M. F. & Portela, L. M. 2008 Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence: results of an international collaborative benchmark test. Intl J. Multiphase Flow 34 (9), 879893.
Mashayek, F. 1997 Direct numerical simulations of evaporating droplet dispersion in forced low-Mach-number turbulence. Intl J. Heat Mass Transfer 41, 26012617.
Mashayek, F. 1998 Droplet–turbulence interactions in low-Mach-number homogeneous shear two-phase flows. J. Fluid Mech. 367, 163203.
Mashayek, F. 2000 Numerical investigation of reacting droplets in homogeneous shear turbulence. J. Fluid Mech. 405, 136.
Mashayek, F. & Pandya, R. V. R. 2003 Analytical description of particle/droplet-laden turbulent flows. Prog. Energy Combust. Sci. 29, 329378.
Masi, E., Simonin, O. & Bédat, B. 2011 The mesoscopic Eulerian approach for evaporating droplets interacting with turbulent flows. Flow Turbul. Combust. 86 (3–4), 563583.
Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small rigid sphere in a non-uniform flow. Phys. Fluids 26, 883889.
Miller, R. S. 2001 Effects of non-reacting solid particle and liquid droplet loading on an exothermic reacting mixing layer. Phys. Fluids 13 (11), 33033320.
Miller, R. S. & Bellan, J. 1999 Direct numerical simulation of a confined three-dimensional gas mixing layer with one evaporating hydrocarbon-droplet-laden stream. J. Fluid Mech. 384, 293338.
Miller, R. & Bellan, J. 2000 Direct numerical simulation and subgrid analysis of a transitional droplet laden mixing layer. Phys. Fluids 12, 650671.
Pan, Y. & Banerjee, S. 1996 Numerical simulation of particle interactions with wall turbulence. Phys. Fluids 8 (10), 27332755.
Popov, Y. O. 2005 Evaporative deposition patterns: spatial dimensions of the deposit. Phys. Rev. E 71, 036313.
Reveillon, J. & Vervisch, L. 2005 Analysis of weakly turbulent dilute-spray flames and spray combustion regimes. J. Fluid Mech. 537, 317347.
Rouson, D. W. I. & Eaton, J. K. 2001 On the preferential concentration of solid particles in turbulent channel flow. J. Fluid Mech. 428, 149169.
Siregar, D. P. & Kuerten, J. G. M. 2013 Numerical simulation of the drying of inkjet-printed droplets. J. Colloid Interface Sci. 392, 388395.
Toschi, F. & Bodenschatz, E. 2009 Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41, 375404.
Tryggvason, G., Scardovelli, R. & Zaleski, S. 2011 Direct Numerical Simulations of Gas–Liquid Multiphase Flows. Cambridge University Press.
Turns, S. R. 2006 Thermal-Fluid Sciences: an Integrated Approach. Cambridge University Press.
Wang, Y. & Rutland, C. J. 2005 Effects of temperature and equivalence ratio on the ignition of $n$ -heptane fuel spray in turbulent flow. Proc. Combust. Inst. 30 (1), 893900.
Wang, Y. & Rutland, C. J. 2006 Direct numerical simulation of turbulent flow with evaporating droplets at high temperature. Heat Mass Transfer 42, 11031110.
van Wissen, R. J. E., Schreel, K. R. A. M. & van der Geld, C. W. M. 2005 PIV measurements of a steam-driven, confined, turbulent water jet. J. Fluid Mech. 530, 353368.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Water droplet condensation and evaporation in turbulent channel flow

  • E. Russo (a1), J. G. M. Kuerten (a1) (a2), C. W. M. van der Geld (a1) and B. J. Geurts (a2) (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed