Skip to main content Accessibility help
×
Home

Wall-modelled large-eddy simulation of turbulent flow past airfoils

  • Wei Gao (a1), Wei Zhang (a1), Wan Cheng (a1) and Ravi Samtaney (a1)

Abstract

We present large-eddy simulation (LES) of flow past different airfoils with $Re_{c}$ , based on the free-stream velocity and airfoil chord length, ranging from $10^{4}$ to $2.1\times 10^{6}$ . To avoid the challenging resolution requirements of the near-wall region, we develop a virtual wall model in generalized curvilinear coordinates and incorporate the non-equilibrium effects via proper treatment of the momentum equations. It is demonstrated that the wall model dynamically captures the instantaneous skin-friction vector field on arbitrary curved surfaces at the resolved scale. By combining the present wall model with the stretched-vortex subgrid-scale model, we apply the wall-modelled LES approach to three different airfoil cases, spanning different geometrical parameters, different attack angles and low to high $Re_{c}$ . The numerical results are verified with direct numerical simulation (DNS) at low $Re_{c}$ , and validated with experiment data at higher $Re_{c}$ , including typical aerodynamic properties such as pressure coefficient distributions, velocity components and also more challenging measurements such as skin-friction coefficient and Reynolds stresses. All comparisons show reasonable agreement, providing a measure of validity that enables us to further probe simulation results into aspects of flow physics that are not available from experiments. Two techniques to quantify hitherto unexplored physics of flows past airfoils are employed: one is the construction of the anisotropy invariant map, and the second is skin-friction portraits with emphasis on flow transition and unsteady separation along the airfoil surface. The anisotropy maps for all three $Re_{c}$ cases, show clearly that a portion of the flow field is aligned along the axisymmetric expansion line, corresponding to the turbulent boundary layer log-law behaviour and the appearance of turbulent transition. The instantaneous skin-friction portraits reveal a monotonic shrinking of the near wall structure scale. At $Re_{c}=10^{4}$ , the interaction between the primary separation bubble and the secondary separation bubble contributes to turbulent transition, similar to the case of flow past a cylinder. At higher $Re_{c}=10^{5}$ , the primary separation breaks into several small separation bubbles. At even higher $Re_{c}=2.1\times 10^{6}$ , near the turbulent separation, the skin-friction lines show small-scale reversal flows that are similar to those observed in DNS of the flat plate turbulent separation. A notable feature of turbulent separation in flow past an airfoil is the appearance of turbulence structures and small-scale reversal flows in the spanwise direction due to the vortex shedding behaviour.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Wall-modelled large-eddy simulation of turbulent flow past airfoils
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Wall-modelled large-eddy simulation of turbulent flow past airfoils
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Wall-modelled large-eddy simulation of turbulent flow past airfoils
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Email address for correspondence: Wei.Gao@kaust.edu.sa

References

Hide All
Abbott, I. H., Doenhoff, A. E. V. & Stivers, J. L.1945 Summary of airfoil data. NACA Tech. Rep. 824.
Asada, K. & Kawai, S. 2018 Large-eddy simulation of airfoil flow near stall condition at Reynolds number 2. 1 × 106 . Phys. Fluids 30 (8), 085103.10.1063/1.5037278
Asada, K., Sato, M., Nonomura, T., Kawai, S., Aono, H., Yakeno, A. & Fujii, K. 2014 LES on turbulent separated flow around NACA0015 at Reynolds number 1 600 000 toward active flow control. In 32nd AIAA Applied Aerodynamics Conference, Atlanta, Georgia, AIAA.
Bae, H. J., Lozano-Durán, A., Bose, S. T. & Moin, P. 2019 Dynamic slip wall model for large-eddy simulation. J. Fluid Mech. 859, 400432.10.1017/jfm.2018.838
Bell, J. H. & Mehta, R. D. 1990 Development of a two-stream mixing layer from tripped and untripped boundary layers. AIAA J. 28 (12), 20342042.10.2514/3.10519
Bose, S. T. & Moin, P. 2014 A dynamic slip boundary condition for wall-modeled large-eddy simulation. Phys. Fluids 26, 015104.10.1063/1.4849535
Bose, S. T. & Park, G. I. 2018 Wall-modeled large-eddy simulation for complex turbulent flows. Annu. Rev. Fluid Mech. 50, 535561.10.1146/annurev-fluid-122316-045241
Boutilier, M. S. H. & Yarusevych, S. 2012 Separated shear layer transition over an airfoil at a low Reynolds number. Phys. Fluids 24, 084105.10.1063/1.4744989
Buchmannand, N. A., Atkinson, C. & Soria, J. 2013 Influence of ZNMF jet flow control on the spatio-temporal flow structure over a NACA-0015 airfoil. Exp. Fluids 54 (3), 14851498.10.1007/s00348-013-1485-7
Cabot, W. & Moin, P. 1999 Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow. Flow Turbul. Combust. 63, 269291.10.1023/A:1009958917113
Chaouat, B. 2006 Reynolds stress transport modeling for high-lift airfoil flows. AIAA J. 44 (10), 23902404.10.2514/1.21228
Cheng, W., Pullin, D. I. & Samtaney, R. 2015 Large-eddy simulation of separation and reattachment of a flat plate turbulent boundary layer. J. Fluid Mech. 785, 78108.10.1017/jfm.2015.604
Cheng, W., Pullin, D. I. & Samtaney, R. 2018a Large-eddy simulation of flow over a grooved cylinder up to transcritical Reynolds numbers. J. Fluid Mech. 835, 327362.10.1017/jfm.2017.767
Cheng, W., Pullin, D. I. & Samtaney, R. 2018b Large-eddy simulation of flow over a rotating cylinder: the lift crisis at Re D = 6 × 104 . J. Fluid Mech. 855, 371407.10.1017/jfm.2018.644
Cheng, W., Pullin, D. I., Samtaney, R., Zhang, W. & Gao, W. 2017 Large-eddy simulation of flow over a cylinder with Re D from 3. 9 × 103 to 8. 5 × 105 : a skin-friction perspective. J. Fluid Mech. 820, 121158.10.1017/jfm.2017.172
Choi, H. & Moin, P. 2012 Grid-point requirements for large eddy simulation: Chapmans estimates revisited. Phys. Fluids 24, 011702.10.1063/1.3676783
Choi, K. S. & Lumley, J. L. 2001 The return to isotropy of homogeneous turbulence. J. Fluid Mech. 436, 5984.10.1017/S002211200100386X
Chong, M. S., Soria, J., Perry, A. E., Chacin, J., Cantwell, B. J. & Na, Y. 1998 Turbulence structures of wall-bounded shear flows found using DNS data. J. Fluid Mech. 357, 225247.10.1017/S0022112097008057
Chung, D. & Pullin, D. I. 2009 Large-eddy simulation and wall modelling of turbulent channel flow. J. Fluid Mech. 631, 281309.10.1017/S0022112009006867
Dahlstrom, S. & Davidson, L. 2001 Large eddy simulation of the flow around an airfoil. In 39th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA.
Diurno, G. V.2001 Wall models for large-eddy simulation of non-equilibrium flows. PhD thesis, University of Maryland, College Park, MD.
Fröhlich, J., Mellen, C. P., Rodi, W., Temmerman, L. & Leschziner, M. A. 2005 Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions. J. Fluid Mech. 526, 1966.10.1017/S0022112004002812
George, K. J. & Lele, S. K. 2014 Wall modeled large eddy simulation of airfoil trailing edge noise. In 20th AIAA/CEAS Aeroacoustics Conference, Atlanta, Georgia, AIAA.
Germano, M. 2004 Properties of the hybrid RANS/LES filter. Theor. Comput. Fluid Dyn. 17 (4), 225231.10.1007/s00162-004-0116-6
Gleyzes, C.1988 Opération décrochage-résultats des essais à la soufflerie F2. Tech. Rep., RT-OA 19/5025, ONERA. Chatillon, France.
Grötzbach, G. 1987 Direct numerical and large eddy simulation of turbulent channel flows. Encyclopedia of Fluid Mech. 6, 13371391.
Hosseini, S. M., Vinuesa, R., Schlatter, P., Hanifi, A. & Henningson, D. S. 2016 Direct numerical simulation of the flow around a wing section at moderate Reynolds number. Intl J. Heat Fluid Flow 61, 117128.10.1016/j.ijheatfluidflow.2016.02.001
Inoue, M., Mathis, R., Marusic, I. & Pullin, D. I. 2012 Inner-layer intensities for the flat-plate turbulent boundary layer combining a predictive wall-model with large-eddy simulations. Phys. Fluids 24, 075102.10.1063/1.4731299
Inoue, M. & Pullin, D. I. 2011 Large-eddy simulation of the zero-pressure-gradient turbulent boundary layer up to Re 𝜃 = O (1012). J. Fluid Mech. 686, 507533.10.1017/jfm.2011.342
Inoue, M., Pullin, D. I., Harun, Z. & Marusic, I. 2013 LES of the adverse-pressure gradient turbulent boundary layer. Intl J. Heat Fluid Flow 44, 293300.10.1016/j.ijheatfluidflow.2013.06.011
Kawai, S. & Asada, K. 2013 Wall-modeled large-eddy simulation of high Reynolds number flow around an airfoil near stall condition. Comput. Fluids 85, 105113.10.1016/j.compfluid.2012.11.005
Kirk, T. M. & Yarusevych, S. 2017 Vortex shedding within laminar separation bubbles forming over an airfoil. Exp. Fluids 58, 4359.10.1007/s00348-017-2308-z
Kitsios, V., Cordier, L., Bonnet, J.-P., Ooi, A. & Soria, J. 2011 On the coherent structures and stability properties of a leading-edge separated aerofoil with turbulent recirculation. J. Fluid Mech. 683, 395416.10.1017/jfm.2011.285
Laitone, E. V. 1997 Wind tunnel tests of wings at Reynolds numbers below 70000. Exp. Fluids 23 (5), 405409.10.1007/s003480050128
Lissaman, P. B. S. 1983 Low-Reynolds-number airfoils. Annu. Rev. Fluid Mech. 15, 223239.10.1146/annurev.fl.15.010183.001255
Lumley, J. L. 1979 Computational modeling of turbulent flows. Adv. Appl. Mech. 18, 123176.10.1016/S0065-2156(08)70266-7
Lumley, J. L. & Newman, G. R. 1977 The return to isotropy of homogeneous turbulence. J. Fluid Mech. 82, 161178.10.1017/S0022112077000585
Lundgren, T. S. 1982 Strained spiral vortex model for turbulent fine structure. Phys. Fluids 25 (12), 21932203.10.1063/1.863957
Marusic, I., Kunkel, G. J. & Porté-Agel, F. 2001 Experimental study of wall boundary conditions for large-eddy simulation. J. Fluid Mech. 446, 309320.10.1017/S0022112001005924
Mary, I. & Sagaut, P. 2002 Large eddy simulation of flow around an airfoil near stall. AIAA J. 40 (6), 11391145.10.2514/2.1763
Mellen, C. P., Frögrave, J. & Rodi, W. 2003 Lessons from LESFOIL project on large-eddy simulation of flow around an airfoil. AIAA J. 41 (4), 573581.10.2514/2.2005
Misra, A. & Pullin, D. I. 1997 A vortex-based subgrid stress model for large-eddy simulation. Phys. Fluids 9 (8), 24432454.10.1063/1.869361
Morgan, P. & Visbal, M. 2003 Large-eddy simulation modeling issues for flow around wing sections. In 33rd AIAA Fluid Dynamics Conference and Exhibit, Orlando, Florida, AIAA.
Morinishi, Y., Lund, T. S., Vasilyev, O. V. & Moin, P. 1998 Fully conservative higher order finite difference schemes for incompressible flow. J. Comput. Phys. 143, 90124.10.1006/jcph.1998.5962
Nakano, T., Fujisawa, N. & Lee, S. 2006 Measurement of tonal-noise characteristics and periodic flow structure around NACA0018 airfoil. Exp. Fluids 40 (3), 482490.10.1007/s00348-005-0089-2
Park, G. I. & Moin, P. 2014 An improved dynamic non-equilibrium wall-model for large eddy simulation. Phys. Fluids 26, 015108.10.1063/1.4861069
Park, G. I. & Moin, P. 2016 Numerical aspects and implementation of a two-layer zonal wall model for les of compressible turbulent flows on unstructured meshes. J. Comput. Phys. 305, 589603.10.1016/j.jcp.2015.11.010
Piomelli, U. 2008 Wall-layer models for large-eddy simulations. Prog. Aerosp. Sci. 44 (6), 437446.10.1016/j.paerosci.2008.06.001
Piomelli, U. & Balaras, E. 2002 Wall-layer models for large-eddy simulations. Annu. Rev. Fluid Mech. 34, 349374.10.1146/annurev.fluid.34.082901.144919
Piomelli, U., Ferziger, J. H., Moin, P. & Kim, J. 1989 New approximate boundary conditions for large eddy simulations of wall-bounded flows. Phys. Fluids A 1 (6), 10611068.10.1063/1.857397
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.10.1017/CBO9780511840531
Saito, N. & Pullin, D. I. 2014 Large eddy simulation of smooth–rough–smooth transitions in turbulent channel flows. Intl J. Heat Mass Transfer 78, 707720.10.1016/j.ijheatmasstransfer.2014.06.088
Saito, N., Pullin, D. I. & Inoue, M. 2012 Large eddy simulation of smooth-wall, transitional and fully rough-wall channel flow. Phys. Fluids 24, 075103.10.1063/1.4731301
Sato, M., Asada, K., Nonomura, T., Kawai, S. & Fujii, K. 2016 Large-eddy simulation of NACA 0015 airfoil flow at Reynolds number of 1. 6 × 106 . AIAA J. 55(2), 673679.
Schmidt, S., Franke, M. & Thiele, F. 2001 Assessment of SGS models in LES applied to a NACA 4412 airfoil. In 39th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA.
Schmidt, S. & Thiele, F. 2003 Detached eddy simulation of flow around A-airfoil. Flow Turbul. Combust. 71, 261278.10.1023/B:APPL.0000014933.66058.22
Schumann, U. 1975 Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys. 18 (4), 376404.10.1016/0021-9991(75)90093-5
Sridhar, A., Pullin, D. I. & Cheng, W. 2017 Rough-wall turbulent boundary layers with constant skin friction. J. Fluid Mech. 818, 2645.10.1017/jfm.2017.132
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow. Cambridge University Press.
Voelkl, T., Pullin, D. I. & Chan, D. C. 2000 A physical-space version of the stretched-vortex subgrid-stress model for large-eddy simulation. Phys. Fluids 12 (7), 18101825.10.1063/1.870429
Yarusevych, S., Sullivan, P. E. & Kawall, J. G. 2006 Coherent structures in an airfoil boundary layer and wake at low Reynolds numbers. Phys. Fluids 18, 044101.10.1063/1.2187069
Yarusevych, S., Sullivan, P. E. & Kawall, J. G. 2009 On vortex shedding from an airfoil in low-Reynolds-number flows. J. Fluid Mech. 632, 245271.10.1017/S0022112009007058
Zang, T. A. 1991 On the rotation and skew-symmetric forms for incompressible flow simulations. Appl. Numer. Maths 7, 2740.10.1016/0168-9274(91)90102-6
Zang, Y., Street, R. L. & Koseff, J. R. 1994 A non-staggered grid, fractional step method for time-dependent incompressible Navier–Stokes equations in curvilinear coordinates. J. Comput. Phys. 114, 1833.10.1006/jcph.1994.1146
Zhang, W., Cheng, W., Gao, W., Qamar, A. & Samtaney, R. 2015 Geometrical effects on the airfoil flow separation and transition. Comput. Fluids 116, 6073.10.1016/j.compfluid.2015.04.014
Zhang, W. & Samtaney, R. 2016 Assessment of spanwise domain size effect on the transitional flow past an airfoil. Comput. Fluids 124, 3953.10.1016/j.compfluid.2015.10.008
Zhou, Y. & Wang, Z. J. 2012 Effects of surface roughness on separated and transitional flows over a wing. AIAA J. 50 (3), 593609.10.2514/1.J051237
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Wall-modelled large-eddy simulation of turbulent flow past airfoils

  • Wei Gao (a1), Wei Zhang (a1), Wan Cheng (a1) and Ravi Samtaney (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed