Skip to main content Accessibility help
×
Home

Vortex-induced rotations of a rigid square cylinder at low Reynolds numbers

  • Sungmin Ryu (a1) and Gianluca Iaccarino (a2)

Abstract

A numerical investigation of vortex-induced rotations (VIRs) of a rigid square cylinder, which is free to rotate in the azimuthal direction in a two-dimensional uniform cross-flow, is presented. Two-dimensional simulations are performed in a range of Reynolds numbers between 45 and 150 with a fixed mass and moment of inertia of the cylinder. The parametric investigation reveals six different dynamic responses of the square cylinder (expanding on those reported by Zaki et al. (J. Fluids Struct., vol. 8, 1994, pp. 555–582)) and their coupled vortex patterns at low Reynolds numbers. In each characteristic regime, moment generating mechanisms are elucidated with investigations of instantaneous flow fields and surface pressure distributions at chosen time instants in a period of rotation response. Our simulation results also elucidate that VIRs significantly influence the statistics of drag and lift force coefficients: (i) the onset of a rapid increases of the two coefficients at $Re=80$ and (ii) their step increases in the autorotation regime.

Copyright

Corresponding author

Email address for correspondence: sungminryu@inu.ac.kr

References

Hide All
Amandolese, X. & Hemon, P. 2010 Vortex-induced vibration of a square cylinder in a wind tunnel. C. R. Méc. 338, 1217.
Arnal, M. P., Goering, D. J. & Humphrey, J. A. C. 1991 Vortex shedding from a bluff body on a sliding wall. Trans. ASME J. Fluids Engng 113, 384398.
Borazjani, I. & Sotiropoulos, F. 2009 Vortex-induced vibrations of two cylinders in tandem arrangement in the proximity-wake interference region. J. Fluid Mech. 621, 321364.
Cheng, L., Zhou, Y. & Zhang, M. M. 2003 Perturbed interaction between vortex shedding and induced vibration. J. Fluids Struct. 17, 887901.
Cheng, M., Whyte, D. S. & Lou, J. 2007 Numerical simulation of flow around a square cylinder in uniform-shear flow. J. Fluids Struct. 23, 207226.
Greenwell, D. I. 2014 Geometry effects on autorotation of rectangular prisms. J. Wind Engng Ind. Aerodyn. 132, 92100.
Greenwell, D. I. & Garcia, M. T. 2014 Autorotation dynamics of a low aspect-ratio rectangular prism. J. Fluids Struct. 49, 640653.
Griffin, O. M. 1985 Vortex shedding from bluff bodies in a shear flow: a review. Trans. ASME J. Fluids Engng 107, 298306.
Iversen, J. D. 1979 Autorotating flat-plate wings: the effect of the moment of inertia, geometry and Reynolds number. J. Fluid Mech. 92, 327348.
Lee, J., Kim, J., Choi, H. & Yang, K. 2011 Sources of spurious force oscillations from an immersed boundary method for moving-body problems. J. Comput. Phys. 230, 26772695.
Lugt, H. G. 1980 Autorotation of an elliptic cylinder about an axis perpendicular to the flow. J. Fluid Mech. 99, 817840.
Lugt, H. G. 1983 Autorotation. Annu. Rev. Fluid Mech. 15, 125147.
Maxwell, J. C. 1854 On a particular case of the descent of a heavy body in a resisting medium. Camb. Dublin Math. J. 9, 145148.
Minewitsch, S., Franke, R. & Rodi, W. 1994 Numerical investigation of laminar vortex-shedding flow past a square cylinder oscillating in line with the mean flow. J. Fluids Struct. 8, 787802.
Obasaju, E. D., Ermshaus, R. & Naudascher, E. 1990 Vortex-induced streamwise oscillations of a square-section cylinder in a uniform stream. J. Fluid Mech. 213, 171189.
Park, Y. G., Min, G. & Ha, M. Y. 2015 Response characteristics of vortex around the fixed and freely rotating rectangular cylinder with different width to height ratios. Prog. Comput. Fluid Dyn. 15, 19.
Riabouchinsky, D. P. 1935 Thirty years of theoretical and experimental research in fluid mechanics. R. Aeronaut. Soc. 77, 283348.
Sarpkaya, T. 2004 A critical review of the intrinsic nature of vortex-induced vibrations. J. Fluids Struct. 19, 389.
Sen, S., Mittal, S. & Biswas, G. 2011 Flow past a square cylinder at low Reynolds numbers. Intl J. Numer. Meth. Fluids 67, 11601174.
Skews, B. W. 1991 Autorotation of many-sided bodies in an airstream. Nature 352, 512513.
Smith, E. H. 1971 Autorotating wings: an experimental investigation. J. Fluid Mech. 50, 513534.
Sohankar, A., Norberg, C. & Davidson, L. 1997 Numerical simulation of unsteady low-Reynolds number flow around rectangular cylinders at incidence. J. Wind Engng Ind. Aerodyn. 69, 189201.
Tatsuno, M., Takayama, T., Amamoto, H. & Ishi-i, K. 1990 On the stable posture of a triangular or a square cylinder about its central axis in a uniform flow. Fluid Dyn. Res. 6, 201207.
Taylor, I. & Vezza, M. 1999 Calculation of the flow field around a square section cylinder undergoing forced transverse oscillations using a discrete vortex method. J. Wind Engng Ind. Aerodyn. 82, 271291.
de Tullio, M. D., Pascazio, G. & Napolitano, M. 2012 Arbitrarily shaped particles in shear flow. In Proceedings of the Seventh International Conference on Computational Fluid Dynamics (ICCFD7), Big Island, HI, US, July 9–13.
Vanella, M. & Balaras, E. 2009 A moving-least-squares reconstruction for embedded-boundary formulations. J. Comput. Phys. 228, 66176628.
Verzicco, R. & Orlandi, P. 1996 A finite-difference scheme for three-dimensional incompressible flows in cylindrical coordinates. J. Comput. Phys. 123, 402414.
Williamson, C. H. K. & Govardhan, R. 2004 Vortex-induced vibrations. Annu. Rev. Fluid Mech. 36, 413455.
Williamson, C. H. K. & Roshko, A. 1988 Vortex formation in the wake of an oscillating cylinder. J. Fluids Struct. 2, 355381.
Yoon, D., Yang, K. & Choi, C. 2010 Flow past a square cylinder with an angle of incidence. Phys. Fluids 22, 043603.
Zaki, T. G., Sen, M. & Gad-El-Hak, M. 1994 Numerical and experimental investigation of flow past a freely rotatable square cylinder. J. Fluids Struct. 8, 555582.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Vortex-induced rotations of a rigid square cylinder at low Reynolds numbers

  • Sungmin Ryu (a1) and Gianluca Iaccarino (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed